STOCK MARKET ANOMALIES AND MOMENTUM STRATEGIES ON THE MALAWI STOCK EXCHANGE

MASTER OF ARTS (ECONOMICS)

THOKOZANI MAXIN SAULOSI

UNIVERSITY OF MALAWI CHANCELLOR COLLEGE

STOCK MARKET ANOMALIES AND MOMENTUM STRATEGIES ON THE MALAWI STOCK EXCHANGE

MASTER OF ARTS (ECONOMICS) THESIS

By

THOKOZANI MAXIN SAULOSI BSoc. Sc. (University of Malawi)

Submitted to the Department of Economics, Faculty of Social Sciences in partial fulfilment of the requirements for the Degree of Master of Arts (Economics)

University of Malawi Chancellor College

DECLARATION

I, the undersigned, hereby declare that this thesis is my original work and has not been submitted to any other institution for similar purposes. Where other people's work has been used, acknowledgements have been made.

THOKOZANI MAXIN SAULOSI		
	Full Legal Name	
	Signature	
	Signature	
	Date	

CERTIFICATE OF APPROVAL

The undersigned certify that this thesis and has been submitted with my approv	represents the student's own work and effort ral.
Signature: Ben Kaluwa, PhD (Professor of Econor Main Supervisor	
•	
Signature: Innocent Makuta, MA (Lecturer in Eco	
Second Supervisor	,

DEDICATION

To my family

ACKNOWLEDGEMENTS

A candle loses nothing by lighting another candle. (Unknown)

Memories of the path I have travelled to this destination makes me realise that now more than ever I am much indebted to many who inspired me and brought me to the point I am. I can but only express my gratitude.

In the Department of Economics at Chancellor College, University of Malawi, I would like to acknowledge and thank Professor B. Kaluwa for accepting to supervise my work, in the process, providing valuable guidance. Mr. I. Makuta for the insightful comments, constructive criticism and encouragement during the development and writing up of this thesis.

Special thanks are due to Maxin, Rose and Madalo Saulosi for all the support. Words alone cannot express how grateful I am to you. I also acknowledge the support my fellow classmates and friends too numerous to mention rendered during this time.

While any credit due to this work must be duly shared, to me belongs the entire shortcoming therein.

ABSTRACT

This paper uses asset pricing models to analyse whether the nascent Malawi stock exchange exhibits calendar anomalies and whether returns are influenced by factors investigated in mature and more sophisticated markets. The findings are that there exists a positive Tuesday and Thursdayday of the week effect on returns at the market level butwith the lowest risks. However, when we control for the size effect and the value premium as per the Fama and French (1993) three-factor model, we find that the day of the week effect disappears. Rather than the usual January effect, May has a stronger effect in terms of month of the year effect. The possible profit opportunities on the SEM in terms of both economic and statistical significance are also investigated and how robust these strategies are after controlling for size and value. Strong momentum profits were found to be associated with small market capitalization portfolios as well as high book equity to market equity. The momentum factor was also statistically significant when considering momentum portfolios, in addition to the size effect and value premium. However, the explanatory power of the momentum factor does not dominate that of size and value.

TABLE OF CONTENTS

ABSTRACT	vi
TABLE OF CONTENTS	.vii
LIST OF FIGURES	vi
LIST OF TABLES	.vii
LIST OF APPENDICES	viii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	3
1.3 Objectives of the study	4
1.3.1 General Objective	4
1.3.2 Objectives	4
1.4 Justification	5
1.5 Organization of the study	6
CHAPTER TWO	7
THE MALAWI STOCK EXCHANGE MARKET	7
2.1 Introduction	7
2.2 Background of the Malawi Stock Exchange Market	7
2.2.1 Listed Companies on the MSE	8

2.2.3 Indices on the MSE	9
2.3 Trading	12
CHAPTER THREE	16
LITERATURE REVIEW	16
3.1 Introduction	16
3.2 Theoretical Framework	16
3.2.1 The Efficient Market Hypothesis (EMH)	16
3.2.2 The Capital Asset Pricing Model (CAPM).	17
3.2.3 Calendar Effects Hypothesis	19
3.2.4 Tax Loss Selling Hypothesis	19
3.3 Empirical Literature Review	20
3.3.1 Day of the Week Effect	20
3.3.2Month of the Year Effect and January Effect	et24
3.3.3 Momentum Strategies in Stock Returns	26
CHAPTER FOUR	29
METHODOLOGY	29
4.1 Introduction	29
4.2 Data Collection	29
4.3 Modelling Framework and Econometric Specif	fication30
4.3.1 Market Model with Day of the Week Effect	et31
4.3.2 Market Model with Month of the Year Effe	
4.3.3 Fama and French Three Factor Model with	
Effects	32

4.3.4 Methodology on Momentum
4.4 Diagnostic Tests
4.4.1 Multicollinearity
4.4.2 Heteroscedasticity
4.4.3 Autocorrelation
CHAPTER FIVE38
PRESENTATION AND INTERPRETATION OF RESULTS38
5.1 Introduction
5.2 Descriptive Results
5.2.1 Day of the Week Effect and Month of the Year Effect
5.2.2 Momentum Strategies
5.3 Day of the Week Effect and Month of the Year Effect using the MarketModel42
5.3.1 Investigation of the Day of the Week Effects
5.3.1 Investigating the Month of the Year Effect
5.4 Investigating Stock Market Anomalies using the Fama and French Three-Factor
Model51
5.4.1 The Standard Fama and French Three-Factor Model51
5.4.2 Analysing the Day of the Week Effect using the Fama and French Three
Factor Model
5.4.3 Investigating the Month of the Year Effect using the Fama andFrench
Three Factor Model 53
5.5 Investigating Momentum Strategies on the MSE
5.5.1 Momentum Portfolios Sorted by Return Only54

5.6	Conclusion	58
СНАРТ	ER SIX	59
CONCL	LUSIONS AND POLICY IMPLICATIONS	59
6.1 Su	ummary and Conclusion of Results	59
6.2 Po	olicy Implications	60
6.3 St	rudy Limitations and Area for Further Research	62
REFERI	ENCES	63
APPENI	DICES	73

LIST OF FIGURES

Figure 1:Malawi All Share Index	9
Figure 2: Market Capitalization on the MSE (1996-2015	10
Figure 3:Trading stocks on the MSE	14

LIST OF TABLES

Table 1: Listed Companies on the Malawi Stock Exchange Market	8
Table 2: Listed Bonds on the MSE	11
Table 3: : Comparison of 2014 and 2015 trading statistics	12
Table 4: Daily mean and CV of return for the market index	38
Table 5: Daily market return by month	39
Table 6: Mean excess returns for momentum portfolios based on returns only	40
Table 7: Mean excess returns for momentum strategies based on Size	41
Table 8: Mean excess returns for momentum strategies based on Book to Market	
equity	42
Table 9: Day of the week effect at Market level	43
Table 10.1: Day of the week effects at company level by Industry	44
Table 10.2: Day of the week effects at company level by Industry	44
Table 10.3: Day of the week effects at company level by industry	46
Table 11.1: Month of the year effect at company level	48
Table 11.2: Month of the year effect at company level	49
Table 12: Investigating month of the year effect on the MSE	50
Table 13: Results for the standard Fama and French three factor model	52
Table 14: Investigating day of the week effect at portfolio level	53
Table 15: Investigating the month of the year effect at portfolio level	54
Table 16: Momentum portfolios sorted by return only regressed on the Fama and	
French three factors	55
Table 17: Investigating momentum effects using the Carhart (1997) model	57

LIST OF APPENDICES

Appendix	1: Market return	73
Appendix	2: BHL return	73
Appendix	3: FMB return	.74
Appendix	4: Illovo return	.74
Appendix	5: Mpico return	75
Appendix	6: NBM return	75
Appendix	7: NBS return	776
Appendix	8: NICO return	776
Appendix	9: NITL return	.77
Appendix	10: PCL return	.77
Appendix	11:REAL return	78
Appendix	12: STANDARD return	79
Appendix	13: SUNBIRD return	79
Appendix	14: TNM return	.80
Appendix	15: OLD MUTUAL return	80
Appendix	16:Categorization of Portfolios 2011	.81
Appendix	17: Categorization of Portfolios 2012	.82
Appendix	18: Categorization of Portfolios 2013	83
Appendix	19: Categorization of Portfolios 2014	.84
Appendix	20: Categorization of Portfolios 2015	85

LIST OF ACRONYMS AND ABBREVIATIONS

ASEA African Securities Exchange Association

BE Book Equity

CAPM Capital Asset Pricing Model

CDH Continental Discount House

CoSSE Committee of SADC Stock Exchanges

DSI Domestic Share Index

EMH Efficient Market Hypothesis

FDH First Discount House

FIP Finance and Investment Protocol

FSI Foreign Share Index

HML High Minus Low

MASI Malawi All Share Index

ME Market Equity

MSE Malawi Stock Exchange

MSE ACM Malawi Stock Exchange Alternative Capital Market

NBS New Building Society

NICO National Insurance Company

PIM Packaging Industries Limited

SADC Southern African Development Community

SMB Small Minus Big

CHAPTER ONE

INTRODUCTION

1.1 Background

The efficiency of the Stock market is important in understanding the dynamics of capital markets, particularly in developing stock markets such as Malawi. The efficiency of developing stock markets is of great importance since the trends of investments are accelerating in these markets as a result of regulatory reforms and removal of other barriers for the international equity investments (Levine & Zervous, 1998). The Efficient market hypothesis suggests that stock prices should reflect the impact of all available private and public information on the value of the firm which means no investor can make profit above the market by taking advantage of this information (Fama, 1970). Thus, stock prices should follow a random walk ¹(Kendall, 1953).

However, empirical results of the existence of anomalies seem to be inconsistent with maintained theories of asset pricing behaviour². Anomalies either indicate profit opportunities (market inefficiency) or inadequacies in the underlying asset pricing model (Schwert, 2001). In conceptualising about an anomaly, Tversky and Kahneman (1986) state that it "is a deviation from the presently accepted paradigms that is too widespread to be ignored, too systematic to be dismissed as random error and too fundamental to be accommodated by relaxing the normative system".

1

¹ The notion that stock pricechanges are random and unpredictable

² Assumes that markets are efficient

In standard financial theory, a financial market anomaly is a situation in which the performance of a stock or a group of stocks deviate(s) from the assumptions of efficient market hypotheses (Latif, et al., 2011). Calendar effects are one of the broadly known anomalies (Kleidon, 1986). Calendar effects consisting of the day of the week effect, January effect, the trading month effect, and holiday effect in stock exchange markets have puzzled financial economists for a long time. Internationally, French (1980), Cross (1973) and Rogalski (1984) have empirically shown the existence of the day of the week effect, while Ayadi, (1998) and Chukwuogor (2008), have demonstrated the presence of the day of the week effect in African stock market returns.

Momentum effect is another form of a stock market anomaly present in capital markets which is difficult to explain using the context of traditional price paradigms. The momentum effect is generally defined as a positive correlation between return of a stock in a certain period with its lagged return (Jegadeesh & Titman, 1993, 1995). Thus, a momentum strategy involves buying past winners and selling past losers. This is manifested in the case of shares that have high earnings (returns) for a period between 3 and 12 months, and in the following period earn higher than average returns. This situation also applies in the opposite case, where shares that have earned lowest returns in the one period continue to earn lower than average returns in the next period. Medium-term profit "momentum" was first reported by Jegadeesh and Titman (1993, 1995). However, it had been criticized by many as the product of data snooping process since its first appearance as an anomaly. However, Grundy and Martin (2001) documented that momentum profits are remarkably stable across subperiods post 1926.

Schwert (2001), Kohers et al. (2004) and Hui (2005) argue that since its first documentation in the 1980s, these market anomalies seem to have disappeared, or at least weakened substantially, in developed stock markets. However, there are very few studies documenting the existence of such anomalies in the developing stock markets. This paper will therefore investigate the presence of anomalies (the day of the week effect, month effect) and momentums in the context of a least developed stock market such been the Malawi stock exchange market.

1.2 Problem Statement

Since the inauguration of the Malawi Stock Exchange (MSE), researchers have tried to find whether the stock market is efficient or not. If the market is not efficient, there will be some stock market anomalies, which some investors will exploit and gain some abnormal returns by using well planned strategies within the market. This effectively diminishes the market confidence as a large percentage of participants in an economy cannot trust the stock market as a tangible investment. Thus, causing the growth of the MSE to likely remain modest.

However, asserting the efficiency of the Malawi stock market is a challenge. On one hand, some studies have found that the Malawi stock market depicts the weak form of market efficiency (Stockbrokers Malawi Limited (2010:6), and Alliance Capital Limited (2011)). This is due to some dominant players in the market who buy and sell shares in large chunks and hence depicting signs of a weak form of market efficiency. An upsurge in the prices of certain stocks in the absence of any major announcements or public information that raises the spectre of inside trading as there may be parties that are privy to privileged information and either deliberately or inadvertently pass

on this information to other players in the market. This is against the backdrop that price increases should be as the result of market-wide demand and not a small number of buyers pushing large volumes of the stock (Alliance Capital Limited, 2011). On the other hand, Ntim et al (2011) and Kampanje(2012) found that the Malawi Stock Exchange market is inefficient even in the weak form of market efficiency. This proves to be a risk to well informed investors who by using tools of simulation or sensitivity analysis, in order to know the best times to invest or disinvest, may not be able to do so because of market inefficiencies.

However, previous studies have not shown the nature and sources of such stock market inefficiencies and they lack statistical analysis of the Malawian Capital Market trends. Ascertaining the nature and sources of these market inefficiencies is important for strategy development in order to improve the performance of the on the stock market which will lead to growth of the stock market. Thus, the study will therefore investigate whether market anomalies and momentum strategies exist on the MSE and how they affect returns.

1.3 Objectives of the study

1.3.1 General Objective

The main objective of the study is to analyse whether stock market anomalies and momentum strategies exist on the MSE.

1.3.2 Objectives

The specific objectives of the study are:

 To examine whether stock market anomalies; day of the week effects and other calendar (January) effects, are present on MSE.

- To study possible profit opportunities (momentum strategies) on the MSE.
- To evaluate investment strategies based on momentum in returns on the MSE.

1.4 Justification

Study of the stock market anomalies and strategic momentum is necessary in several ways. Firstly, studies done in Malawi are done on the efficiency of the stock market but studies done to ascertain the nature of those market inefficiencies do not exist, thus this study will bridge the gap in knowledge on the nature and sources of market inefficiencies in Malawi. Secondly, the study will provide valuable insight for market participants, regulators and policy makers by investigating the market anomalies and momentum strategies. This will be done by applying both mean and variance specifications for a less developed stock market. Lastly, the study will be valuable to investment managers, portfolio managers, arbitrageurs and the investment public at large. The research will demonstrate how the results can be useful to them in adjusting their trading strategies. It will show them how they can profit from seasonal and other anomalies if they exist. In a developing stock market of Malawi, it is important to see whether there are certain patterns which can be exploited by investors.

1.5 Organization of the study

The rest of the study is organized in five chapters. Chapter Two gives an overview of the Malawi Stock Exchange Market. Chapter Three reviews the relevant literature whereby market anomalies are discussed from a theoretical perspective and the major empirical studies on Stock market anomalies relevant to this study are discussed. Chapter Four describes the methodology in which two financial models will be used as specified by Bundoo, S, K (2011) but with some modifications in accordance with the available data and the reviewed literature. Chapter Five presents and discusses the empirical results. It gives the interpretation of the results obtained from the econometric and statistical tests. Finally, Chapter Six provides the policy implications of the results obtained, as well as the concluding remarks, and the limitation(s) of the study.

CHAPTER TWO

THE MALAWI STOCK EXCHANGE MARKET

2.1 Introduction

This chapter provides a brief background on the Malawi Stock Exchange and the context in which the study is been conducted. The chapter will cover the origin and objectives of the Malawi Stock Exchange. In addition, it will look into the counters, listing dates and trading systems among other salient features. The information in this chapter is sourced from various reports by the Malawi Stock Exchange, Reserve Bank and Asset Management firms in Malawi.

2.2 Background of the Malawi Stock Exchange Market

The Stock Exchange of Malawi was inaugurated in March 1995 but began trading in November 1996, after the listing of Malawi's largest insurance firm, NICO Holdings Limited, under the aegis of the Reserve Bank of Malawi, with 2300 Malawian citizens buying shares (Kampanje, 2012). Before the listing of the first company, the major activities that were being undertaken were the provision of a facility for secondary market trading in Malawi and Government securities which included Treasury Notes and Local Registered Stock. Since the inauguration, the exchange has listed a total of 15 companies with two companies de-listing from the exchange. Currently, there are 13 listed companies on the stock exchange of Malawi after the de-listing of Packaging Industries Malawi Ltd (PIM) in 2011. Old Mutual, however, is the only foreign

originated company on the exchange market. It is worth noting that the Malawi Stock Exchange market is dominated by financial institutions (table 1).

2.2.1 Listed Companies on the MSE

Table 1: Listed Companies on the Malawi Stock Exchange Market

Company	Code	Sector	Date listed	Listing Price
				(MWK)
Nico Holdings NICO		Insurance and banking	Nov-96	2.00
Blantyre Hotels	BHL	Hospitality	Mar-97	0.84
Illovo Sugar	ILLOVO	Manufacturing	Nov-97	2.25
Malawi				
Standard Bank	STANDARD	Banking	Jun-98	3.25
Press Corporation	PCL	Food manufacturing,	Sep-98	14.89
Ltd		Trading Property &		
		Banking		
Old Mutual	OML	Insurance and	Jul-99	79.56
		Banking		
National Bank of	NBM	Banking	Aug-00	4.00
Malawi				
Sunbird Tourism	SUNBIRD	Hospitality	Dec-00	1.85
Ltd				
National	NITL	Insurance and	Mar-05	2.65
Insurance Trust		Banking		
Ltd				
First Merchant	FMB	Banking	Jun-06	2.50
Bank				
NBS Bank Ltd	NBS	Banking	Jun-07	2.60
Malawi Prop Inv.	MPICO	Property	Nov-07	2.25
Co. Ltd				
Telekom	TNM	Communication	Nov-08	2.00
Networks Malawi				

Source: MSE 2015

The holders of the Malawi Stock Exchange market include the Reserve Bank of Malawi and the Malawi Government. The stock exchange has four stock-broking companies in operation which consist of Stockbrokers Malawi Limited; FDH stockbrokers; African Alliance Securities Limited and CDH Stockbrokers Limited.

2.2.3 Indices on the MSE

There are three indices that are used on the MSE. These are; The Malawi All Share Index (MASI), which is the barometer that measures the average price movement of all counters; the Domestic Share Index (DSI), which measures the average price movements of all local registered companies on the MSE; and the Foreign Share Index (FSI), which measures the price movements of all foreign owned companies. The MASI has increased since 1996 to 2015. It can be observed from Figure 1 that there has been an increase in the MASI which is partly due to an increase in the number of companies listed on the exchange. Increases in price movements on the MSE of individual companies also have led to an increase in the MASI. This shows that there is an improvement in the performance of the Malawi Stock Exchange.

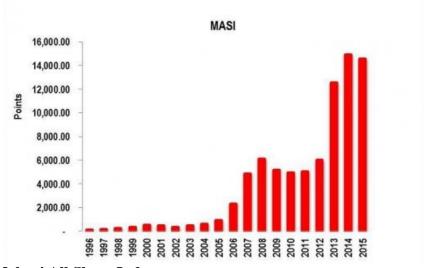
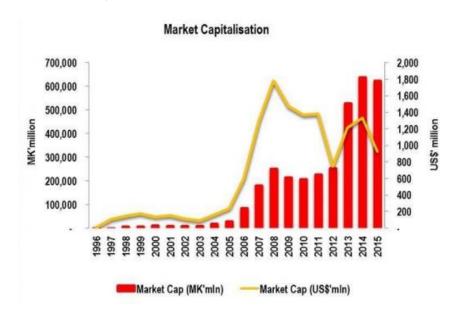



Figure 1:Malawi All Share Index

Source: MSE

There has been an increase in market capitalization which was mainly due to an increase in number of firms listed on the MSE and also an increase in the prices of shares. It is also notable that market capitalizationincreased from 1996 to 2015 (Figure 2). An increase in market capitalization of MK1, 120,358.45 (US\$9,051.16 million) was noted in 2005 which increased to MK251, 447.07 million (US\$1,788.39million) in 2008 but dropped to MK3, 562,267.61 (US\$10,570.5270Million) in 2012.

Figure 2: Market Capitalization on the MSE (1996-2015) Source: MSE

Then the stock exchange established the Malawi Stock Exchange Alternative Capital Market (MSE ACM) in order to encourage more companies to list on the exchange. This is to encourage small to medium companies that do not meet the full criteria for listing on the exchange's main board. The MSE ACM has less stringent requirements for listing and thus, allows companies in their growth phase to list. When they are fully grown they graduate to list on the board. However, there is no company listed on the MSE ACM.

The stock exchange of Malawi also deals in bonds and has two listed bonds which are government bonds.

Table 2: Listed Bonds on the MSE

Bond code	Issuer	Maturity	Coupon	Nominal Value	Interest Due
		Date	Rate	Issued	Date
MW5YN	Malawi	30-Dec-16	010.00	822,040,000.00	30 June&31
	Government				December
MW3YNR	Malawi	30-June-	10.00	106,870,000,000.00	30 June& 31
	Government	17			December

Note: The nominal values are in Malawi Kwacha

The other reason of the establishment of the Malawi Stock Exchange was to serve as a vessel through which government would privatize government owned companies to the public. In order for the functions of the Malawi Stock Exchange to be achieved the stock exchange operated under the following objectives:

- Promoting development of the capital markets in Malawi by, interalia, mobilization of savings and related funds for investment in long-term assets and other productive enterprises.
- Promoting just and equitable principles of securities trading.
- Preventing fraudulent and manipulative acts and practices by securities issuers,
 brokers, dealers, market makers, underwriters and all participants in the market.
- Promoting a free and open market by preventing and/or removing impediments.
- Protecting both investors and public interest in the market.

2.3 Trading

Financial instruments traded on the Malawi Stock Exchange are common stock, preference shares, corporate debentures, warrants, government stocks and fixed interest securities, with bulk of listings and trades of common stock. Trading on the MSE is by call over, using an open-cry floor system on a matched basis. Trading is done once a day from Monday to Friday. The market was marginally bearish in 2015 as it registered a negative return on investment of -2.17% compared to 18.79% registered in 2014. It, however, recorded an increase in both traded volume and value and with no trades on the three Government bonds listed.

Table 3: Comparison of 2014 and 2015 trading statistics

Trading Statistics	2015	2014
Traded Value (MK)	48,592,086,538.82	10,865,168,546.94
Traded Value (US\$)	101,857,955.72	26,670,773.15
Traded Volume shares	2,355,317,369	1,724,271,388
No. Transactions	1,220	1,673
Gainers	9	13
Decliners	5	0

Source: MSE

An increase in the traded value of stock from 2014 to 2015 can be observed with an increase in the volume of shares traded. However, there is a decrease in the number of gainers in 2015 but the number of listed companies remain constant (see Table 3). In 2016 however, it can be seen that the number of listed companies drops to 13 because of the de-listing of Real Insurance from the stock exchange.

Malawi Stock Exchange is characterized by thin trading. That is to say there is large inactivity is some counters where some companies stay for some periods without

trading of shares. This poses as a challenge of the stock exchange. However, it is noted from figure 2 that certain counters have registered increased trading of shares from 2000 to 2015 while others have registered a decrease in the volume of shares traded. Old Mutual counter in 2001 registered 1,211,017,366 shares traded but decreased to less than 50,000,000 shares thereafter while TNM registered less than 50,000,000 traded shares in the year it registered but increased to 3,959,069,267 shares traded in 2013, however, decreased to less than 50,000,000 in 2015.

Evaluating the annual trading shares on the basis of sectors, in Figure 2, on average, banks have registered low volumes of trading shares on the MSE compared to telecommunication and investment sector. However, when comparing banks in terms of traded shares, it shows that traded shares of StandardBank rose from 2000 to 2001 but decreased in 2002. National Bank of Malawi and NBStraded shares were below 20,000,000 since the year 2000. FMB which registered in 2006 had traded shares less than 20,000,000 but increased to 1600753264 in 2015.

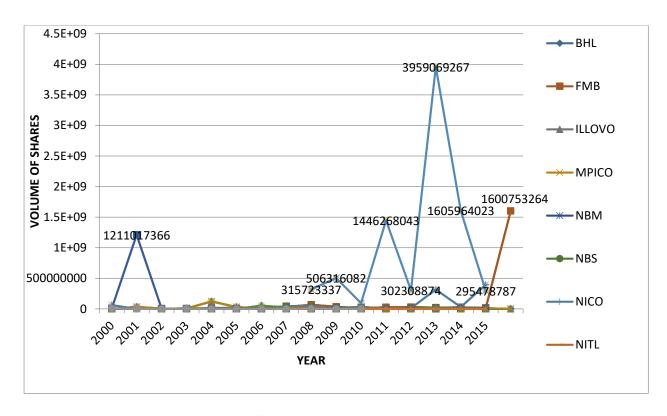


Figure 3:Trading stocks on the MSE

Source: MSE

The other major challenge the exchange faces is the size of the market. It has taken the MSE13 years to have 15 companies listed where two companies de-registered and most of the listed companies are financial institutions. This means there is no sufficient variety in terms of categories of companies listed. The privatization process was the main route through which listing slightly increased. Lastly, the overall challenge is that most Malawians live under poverty conditions and their income is used on consumption rather than saving and investing on the stock exchange. The major players of the stock market are usually large companies with enough capital to invest in shares and not households whose income is not sufficient enough for investment on the stock exchange.

CHAPTER THREE

LITERATURE REVIEW

3.1 Introduction

The chapter presents a summary and discussion of what other researchers have done in the area of stock market anomalies and strategic momentums. The chapter has three sections. Section 3.1 provides some theoretical framework upon which the study is based. The second section, 3.2, presents some empirical evidence on anomalies. The last section, 3.4, concludes the chapter.

3.2 Theoretical Framework

If the efficiency of the stock market holds, it is impossible for an investor to outperform the market and earn abnormal returns. Based on this, different theories exist that explain anomalies on the stock market. This paper will discuss four theories; The Efficient Market Hypothesis (Fama, 1970), The Capital Asset Pricing Model (CAPM) (Sharpe, 1964), The Calendar Effects Hypothesis and the Tax Loss Selling Hypothesis (Ritter, 1988).

3.2.1 The Efficient Market Hypothesis (EMH)

The concept of efficient market hypothesis suggests that asset prices fully reflect and incorporate all available information and therefore it is impossible to outperform the market in order to make abnormal returns (Fama, 1970). EMH deals with informational efficiency and it is strongly based on the idea that the stock market

prices or returns are unpredictable and do not follow any regular pattern. The theory simply suggests that prices of shares are determined by the laws of demand and supply in the competitive market with rational investors. Thus to say investors gather all the available information very rapidly and immediately incorporate this information into stock prices. This means only new information, that is news, will cause changes in prices. However, news by definition is unpredictable; therefore it follows that any stock market which is immediately influenced by the news should also be unpredictable.

Investors purchase securities with the perception that the security will increase in value in the future at the time of purchase, while in selling, investors hold the perception that security's value in the future will be less than the current selling price. However, with efficient markets, an individual should only be capable of outperforming the market by means of luck, as opposed to skill, since "prices fully reflect all available information" (Fama, 1970).

3.2.2 The Capital Asset Pricing Model (CAPM)

The CAPM as developed by Sharpe (1964), Lintner (1965) and Black (1972) has led several authors to hail it "the birth of Asset Pricing models" (Fama and French, 2004). The expected return on asset is the sum of the return on a risk free asset, plus an expected premium for risk, expressed as a function of the asset return covariance with the market return (beta). The CAPM in its simplest form can be expressed as:

$$E(R_i) = R_f + \beta_i E[(R_m - R_f)]$$
(1)

Where

 $E(R_i)$ is the expected return of stock i

$$\beta_i$$
 is the systematic risk calculated as $Cov(R_i, R_m) / Var(R_m)$

 $E(R_m)$ is the expected return of the market

 $E(R_m - R_f)$ is the market premium

 R_f is the risk free return

This results in a linear cross-sectional relationship between mean excess returns and exposures to the market factor (Fama and French, 1992). Thus, fundamentally, the model stipulates that the market will reward only the holding of systematic risk as the unsystematic risk can be handled by holding a diversified portfolio (Bundoo, 2011). In the study, systematic risks are measured by the market return (MASI) and the unsystematic risks are measured by the days of the week. This means that, for companies i and j, the market return will have the same effect on their returns. But then, the days of the week will affect their returns differently. However, the beta cannot be directly observed but can only be estimated. To estimate the beta of the firm, a regression is used and requires firms to select both an estimation period and a return interval. The daily return series can be used to estimate individual company's beta. The market model can be used to estimate the beta then augmented the model to consider the day of the week effect and Month effect. The market model is given as:

$$E(R_i) = \alpha + \beta_i E[(R_{m,t})] \tag{2}$$

Where

 α is the constant term

The other explanatory variables are as in Equation 1 above

3.2.3 Calendar Effects Hypothesis

The calendar effect hypothesis suggests that there are consistent abnormal patterns in asset return in terms of hours of the day, day of the week, week of the month and month of the year (Levine, 1991). There are a number of calendar anomalies which includes the day-of-the-week effect, turn-of-the month effect, month-of-the-year effect and the holiday effect. The day of the week anomaly states that for all the week days the expected returns are not same (Wachtel, 1942). The theory speculates that the average return on Monday is significantly negative and is lower than average returns of other week days. This is due to what is termed as the weekend effect. On the other hand, returns on Friday are assumed to be abnormally high than the rest of the days. The possibility of studying this effect is through the use of daily data to examine the relationship between the stock price changes that occur from one trading day to the next and over weekends.

Calendar effect theory also postulates that the return on common stock is not the same for all themonths of the year(Schwert, 2001). This is commonly known as the month of the year effect. This effect suggests that there exists a certain month of the year when returns of a stock are abnormal and thus, investors earn returns above the market return. This study examines the existence of the day of the week effect and the month of the year effect on the MSE.

3.2.4 Tax Loss Selling Hypothesis

The tax-loss-selling hypothesis explanation of the turn-of-the-year effect is stated by Roll (1983) as follows:

There is downward price pressure on stocks that have already declined during the year, because investors sell them to realize capital losses. After the year's end this price pressure is relieved and the returns during the next few days are large as those same stocks jump back up to their equilibrium values.

Thus, the hypothesis provides a basis for January (month) effect as it speculates that, investors tend to sell out the securities held, at the end of the tax year in order to realize capital losses. This helps in reducing their tax liabilities. As such, stock prices go down as a result of this downward trend in the market. In so doing, investors tend to start purchasing securities at the start of a new tax year and this increases stock prices (Ritter, 1988).

3.3 Empirical Literature Review

One of the most enthralling areas in financial market research during the previous decades has been on stock market anomalies. This section gives the review of other studies done on anomalies. Section 3.2.1 gives a review on Day of the Week Effect; section 3.2.2 gives evidence of Month of the Year Effect (January effect) anomalies and section 3.2.3 reviews evidence on momentum strategies.

3.3.1 Day of the Week Effect

There is a large body of literature testing for the presence of dayoftheweek effect in asset returns. One of the first pioneers documenting the existence of theday of the week effect was Fields (1931). Using a period of 15 years, he studied the Dow Jones from 1915 to 1930, in which he found that the price was higher on a Saturday. Further, the study found that Monday on average produced negative equity returns than returns for the rest of the days of the week that had positive returns. However,

the drawback of the method the study used was that it used the mean returns which do not take into account outliers, which can skew the distribution to a particular direction. In order to overcome this problem, Fields used a large sample size. In addition, another limitation was that Saturday's closing price was not compared to any other day's closing price. Malawi stock market only trades during the week and not during the weekend which differs from the trading days on the Dow Jones. This narrows the study to test only trading days from Monday to Friday.

Concurring with studies done by Fields (1931), in Japan, Kato (1990) finds that returns on Tuesday were negative but positive on Wednesday and Saturday. This is similar for Greece as they found out that Monday and Tuesday had negative average returns and that Monday had the highest standard deviation of returns (Alexakis & Xanthakis, 1995). The study further found that Fridays had positive and highest returns as compared to other days. Monday and Tuesday have negative returns because, listed companies tend to give out information that will have a negative effect on the share prices at the beginning of the week, thus, having negative effects on Monday which can also affect Tuesday prices. Mills et al. (2000) went further to examine not only basket indexes but also constituent stocks of the Athens Stock Exchange general index from 1986 to 1997. The study found significant evidence for higher returns on Fridays and lower returns on Tuesdays and Wednesdays. Thus, Mondays have negative returns and Fridays tend to have positive effects due to the weekend effect. The main reason for the weekend effect (low returns on Mondays and high returns of Fridays) is the arrival of negative news at the close of business on Fridays. Thus, firms with bad news tend to release it after close of business on Fridayand good news is released quickly during the week so that investors can bid the stock price up(Schwert, 2001).

Similar results are found when studying stock markets in the United States and Turkey. Lakonishok and Levi (1982), Mehdian and Perry (2001), among others document that the Monday returns were significantly negative and were lower than returns of any other day of the week on United States stock markets. In Turkey, Dicle and Hassan (2007) investigated the Istanbul stock exchange indices and they found that Mondays exhibited significant negative returns. The study also found that Fridayshadhigh positive returns followed by Thursday. However, there is no evidence of the day of the week effect on the Russian stock markets. Using the GARCH, EGARCH and TGARCH models to analyse day of the week effect on the stock market, the study found that day of the week effect is non-existent. However, a closer look at the study found that the study took into account the transaction costs whichhad the bid-ask spreadsas the proxy. This could explain why the day of the week effect was not found.

However, when using the same models (GARCH (1,1), EGARCH (1,1) and TGARCH (1,1)) on the Indian stock markets, it was found that from the GARCH (1,1) model there exists the dayoftheweek effect on stock returns but the effect seem to have disappeared when analysed using the EGARCH(1,1) and TGARCH(1,1) models. This means that results of the day of the week effect vary depending on the model used. The study found the existenceof positive Monday and Wednesday effects with the average return on Monday which is significantly higher than the average return of Wednesday in the NSE-Nifty and BSE-SENSEX market returns(Srinivasan

& Kalaivani, 2014). This is contrary to the findings of Lakonishok and Levi (1982), Mehdian and Perry (2001)who found negative Monday returns, among others. The settlement procedure could be explanation for positive Monday returns in India. However, settlement procedures vary for different countries.

It is interesting to note that similar results are also found on emerging African stock markets. Bhana (1985) found that shares traded on the Johannesburg stock exchange (JSE), had significantly negative average returns on Monday with the highest positive returns on Wednesday. However, Davidson and Meyer (1993), using All Share Index for the period of 1986 to 1991 found that the Monday effect was not significant anymore on the JSE. Chukwuogor-Ndu (2007) investigates the presence of the dayof theweek effect on the stock market return for fiveAfrican stock markets. The results show that several stock markets in Africa experience market anomalies differently. Nigeria, Botswana and Ghana have the highest returns on Wednesday which differs from the findings of Mills et al. (2000), who found lower returns on Wednesday. South Africa and Egypt experienced their highest returns on Monday which is similar to what Srinivasan & Kalaivani, (2014) found when analysing stock markets in India. Egypt and Botswana have negative returns on Tuesday. This could be due to bad news which is usually given on Monday and thus having negative returns on Tuesday.It was noted from the results that Ghana and Nigeria, had no negative returns during the trading days of the week and did not exhibit day of the week effects. However, using the Kruskal-Wallis test, the study found that thereexists no dayoftheweek effect on stock returns in the Botswana, Egyptand South Africa stock markets as observed.

Bundoo (2011) documented that the highest returns on individual stock on the Stock Exchange of Mauritius (SME) are observed on Wednesday, followed by Friday. He, however, tested the impact of the day of the week effect on the market return and found that it was positive and stronger for Wednesday, Thursday and Friday. This conquers with Agathee (2008) observation, where returns were higher on Friday on the SME. However, he further found that the mean returns of the week days were jointly insignificant and different from zero. The study analysed the day of the week effect using the asset pricing models rather than the conventional econometric models. When examining empirically the dayoftheweek effect on the Tunisian stock exchange index return, using the three multivariate general autoregressive conditional heteroscedasticity models (GARCH (1,1); EGARCH (1,1) and TGARCH (1,1)), it was found that Thursdays had significant positive effect while Tuesdaysretained a significant negative effect on TUNIDEX returns (Derbali et. al, 2016). However, the study did not investigate how the day of week effect affected individual stocks since theirvariability exists in individual stocks. However, most of these studies have concentrated on developed economies and emerging stock markets while studies done in undeveloped stock markets is limited. For a stock market that has been in existence since 1996 it is imperative to investigate if day of the week effect exists on the

3.3.2Month of the Year Effect and January Effect

Malawi stock market.

Watchel (1942) was the first to study the month of the year effect. Concentrating on the January effect, Watchel (1942) found that in the US stock market the returns were higher in the month of January than any other months. Rozeff and Kineey (1976) also found that on the New York stock exchange for the period of 1904 to 1974, returns

are higher in the month of January more especially the first fifteen days of the month. Boudreaux (1995) proved the existence of monthly effect for three out of seven countries. When investigating the presence of themonth of the year effects in the Romanian equity market, using Bucharest Stock Exchange returns between 2000 and 2011, there was no trace of traditional Monday or January effect for the entire study period. However, January effect was only observed during pre-crisis period(Diaconasu et. al 2012).

For emerging stock markets in Africa, Ayadi et al. (1998) studied the Ghanaian stock market (1991-1996), Nigerian stock market (1984-1995) and Zimbabwe stock market (1987-1995), and found that there was no seasonality (month effect) on the Zimbabwe and Nigerian stock market but seasonality existed on the Ghanaian stock market. For the stock exchange of Mauritius (SEM),Bundoo (2011) found that the January effect did not exist but instead found that there existed a September effect which was significant. This was due to the fact that the financial year of many companies in their sample ends on June 30. However, they are given three months after that to file their auditedaccounts with the Registrar of Companies. Many companies release their auditedaccounts in the press towards the end of August and in the first week of September thus causing a September effect.

Brown et al. (1983) in explaining the causes of the month of the year effect claimed that only the January effect is explained by the Tax loss hypothesis. It was, however, heavily challenged by Gultekin and Gultekin (1983) when they studied 15 different stock markets, inclusive of the UK stock market, with a tax year ending in April. It was found that in all markets, January returns were relatively higher than the rest of

the months. This suggests that the Tax loss selling hypothesis is not a conclusive explanation of the January effect; therefore, it remains an unexplained puzzle. Given the limited research on developing African stock markets in this area, this study will investigate some of the seasonal anomalies on the Malawi Stock Exchange (MSE). This is an in depth study as it will link seasonal anomalies in the developing market with asset pricing models.

3.3.3 Momentum Strategies in Stock Returns

Momentum is one of the most challenging and strongest asset pricing anomaly. Momentum profits that are persistent have attracted considerable attention from investment researchers as they pose a challenge to the efficient market hypothesis (Bundoo, 2011).

The first to report self-financing trading strategies were Jegadeesh and Titman (1993). They found that the returns of all the momentum strategies they examined were positive and statistically significant, thus, obtaining profits for self-financing portfolios of at least one percent per month. They also reported that momentum strategies earn significant profits in small, medium and large firm, and across beta-based sub samples. Further, they reported that the abnormal performance of momentum strategies is due to the long side of the portfolio, rather than the short side which suggests that momentum profits are indeed obtainable for investors.

Wei, et al. (2000) examined the momentum returns in eight Asian countries in one composite sample, and found a weak momentum effect. While Chui et al. (2011), excluding Japanese stocks from the sample, found that the momentum effect was

statistically significant, returning an approximate of 1.5% per month in the 1975 to 1997 sub period³. Martin Ji and Griffin (2005, 2003) broadened the country sample further and examined the profitability of momentum strategies in the 40 countries with more than 50 stocks listed. They found that the momentum strategies were generally profitable across the countries that were examined, with momentum returns highly significant in Africa, the Europe and the US but not in Asia.

Bundoo (2011) also investigated the momentum strategies on the stock exchange of Mauritius and found that there existed moderate momentum profits on the low BE/ME portfolios and strong momentum profits for the small market cap portfolios as well as the high BE/ME portfolios. Those that were based on big market capitalization stocks did not show momentum profits. He further investigated whether the momentum effects were seasonal and found that no seasonality effects were observed.

Jegadeesh and Titman (1993) tried to explain the momentum as a reward for risk but lacked serious consideration as past winners and past losers are classified on the basis of past returns (Bundoo, 2011). This is confirmed by Fama and French (1996) as they failed to price the momentum profits by exposure to risk factors in the three factor unconditional asset pricing model by Fama and French (1993). Moskowitz and Grinblatt(1999) explain the momentum effect to be solely by momentum in industry returns. They found that momentums disappear after correcting for industry effects. However, Lee and Swaminathan (2000), and Grundy and Martin (2001) investigated their claim and came with different conclusions. With growing interest in researching momentums and due to the fact that there exists no single credible explanation of the

-

³Chui et al. actually examined momentum returns over the 1975-2000 period. However, momentum returns were markedly different due to the Asian financial crisis.

existence of the momentums, it is therefore important to investigate if this phenomenon exists in a developing stock market as the MSE.

CHAPTER FOUR

METHODOLOGY

4.1 Introduction

This chapter presents the methodology of the study. Section 4.1 presents the sources and nature of the data. Modelling Framework and Econometric Specification is presented in section 4.2, and diagnostic measures to be done are in section 4.3.

4.2 Data Collection

The study uses data collected from the Malawi stock exchange (MSE) and Companies' annual reports. Daily and monthly share prices and market index will be used. Although there is a scholarly merit in studying long periods, it can, however, lead to long forgotten good or poor performance and can distort the overall results giving a misleading picture and interpretation of recent trends (Chukwuogor-Ndu, 2007). Thus, for this study, data will cover the period of 2011 to 2015. This is done to capture the period that the stock market had the highest number of listed companies before Real insurance de-listed in 2016. Various MSE annual reports will be used for descriptive statistics for the market in general and, daily and monthly share prices and market index will be used for inferential statistics. Companies' annual reports will be obtained from the listed companies for the years 2011 to 2015.

4.3 Modelling Framework and Econometric Specification

When examining anomalies such as the day of the week effect in stock markets, most studies adopted the Garch(1,1) model (Mehdian& Perry, 2001; Chukwuogor-Ndu, 2008; Liu, 2015; Derbali & Hallara, 2016) This study will, however, analyse market anomalies and momentum strategies within the context of asset pricing models. This is because the GARCH (1,1) model assumes that the innovations have a known distribution, for example, normal distribution or the student t-distribution, and that these innovations arei.i.d(Rosi, 1973). This exposes the model to high risk of producing inconsistent estimators in the event that the assumed distribution is not correct(Chung, 2012). Further, financial time series often exhibit leptokurtosis (Holly & Montifort, 2010). This means that assuming normality of innovations may technically lead to wrong likelihood functions and hence inconsistent results.

Due to this the study will adopt Asset pricing models to investigate stock market anomalies on the MSE.

The daily prices of shares will be used to investigate calendar anomalies. Daily returns will be estimated as follows:

$$R_{i,t} = \frac{\left(P_{i,t} - P_{i,t-1}\right)}{P_{i,t}} + D_{i,t}$$
(3)

Where

 $R_{i,t}$ is the return of company i on day t

 $P_{i,t}$ is the share price of company i on day t

 $P_{i,t}$ is the share price of company i on day t

 $D_{i,t}$ is the dividend given from company i on day t

4.3.1 Market Model with Day of the Week Effect

The model is used to estimate betas of the listed companies by taking into account the day of the week effect. This model assumes that returns of a share are affected by systematic and unsystematic risks. Thus, the systematic risk is captured by the market return and the unsystematic risk is captured by the days of the week. The model is augmented and specified as:

$$R_{t} = \beta R_{m,t} + \alpha_{1}MON + \alpha_{2}TUE + \alpha_{3}WED + \alpha_{4}THUR + \alpha_{5}FRI + \mu_{t}$$
(4)

Where

 R_t is the return on share of a given company at time t

 $R_{m,t}$ is the market return at time t

 μ_t is the error term

 β , α_1 to α_5 are the coefficients

Variables MON to FRI are day of the week dummy variables which are equal to 1 on that day and zero otherwise.

Note: Equation 4 has no constant terms. This is because of the inclusion of all the day of the week dummy variables (Green, 2003).

4.3.2 Market Model with Month of the Year Effect

The augmented market model will be used to analyse the results of month of the year effect on returns. However, from literature, the January effect will be analysed. The model is specified as:

$$R_{t} = \alpha + \beta R_{m,t} + \gamma D_{JAN} \tag{5}$$

Where:

 $D_{\rm JAN}$ is a dummy variable taking the value of 1 when it is the month of January and 0 otherwise.

Note: Equation 4 and 5 will be run for all individual companies listed on the MSE from the period 2011 to 2015. The above equations will also be run with market return (MASI return) as the dependent variable. This is to capture the effects of market anomalies on the stock market index (MASI).

4.3.3 Fama and French Three Factor Model with Day of the Week and January Effects

The study also adopts the Fama and French Three Factor Model to investigate the calendar effects by the use of portfolios. Fama and French (1993) proposed a three factor model to capture the cross-section of expected returns in a stock market associated with size and B/M characteristics. This model will be augmented to analyse day of the week effects and the January effect respectively. The models are specified as follows:

$$R_{t} - R_{f} = \beta \left[R_{m,t} - R_{f} \right] + s(SMB_{t}) + h(HML_{t}) + \alpha_{1}(MON) + \alpha_{2}(TUE) + \alpha_{3}(WED) + \alpha_{4}(THUR) + \alpha_{5}(FRI) + e_{t}$$

$$(6)$$

$$R_t - R_f = \alpha + \beta \left[R_{m,t} - R_f \right] + s(SMB_t) + h(HML_t) + \gamma D_{JAN} + e_t$$
 (7)

Where:

 R_t is the return of a given portfolio at time t

 R_f is the risk free rate

 $R_{m,t}$ is the market return at time t

 β is the coefficient for market premium for each given portfolio

SMB is the size premium (Small Minus Big)

HML is the value premium (High Minus Low)

Sis the coefficient for the excess average return of portfolios with SMB His the coefficient for the excess average return of portfolios with HML e_t is the error term for at time t.

The weighted 91-day Treasury Bill rate will be used as a proxy for the risk free rate. The portfolio return will be be be period of January 2011 to December 2015. Fama and French (1993) three factor model requires that the stocks should be split into classes according to size and Book to market equity ratio.

Classification Aaccording to Ssize

The stocks will be split into two categories, of small market equity and stocks of big market equity. The market equity (ME) is equal to stock price times the number of issued ordinary shares. The formula is given as:

$$ME = P_{i,t} * ordinaryslares_{i,t}$$
 (8)

The median size of the whole sample will be the breakpoint to differentiate the two categories. Thus, small market firms are those firms with market equity less than the median value and those with values higher than the median value will be considered to be big market equity firms.

Classification According to Book to Market Equity (BE/ME)

Fama and French (1993) classified the stocks into three groups of portfolios consisting Low book-to-market equity (BE/ME) ratio, medium (BE/ME) ratio and high (BE/ME) ratio. Using this method and given our small sample size, only two

classes of book equity to market equity (BE/ME) value (low BE/ME and high BE/ME) will be created. The group of stocks of below or equal to the median BE/ME will be considered as low BE/ME and those of high BE/ME will be the stocks with BE/ME values higher than the median BE/ME.

Following the classification above, four portfolios will be constructed namely: WHB (High book/Bigmarket capitalization), WHS (High book/Small market capitalization), WLB (Lowbook/Big market capitalization) and WLS (Lowbook/Small market capitalization). Value-weighted returns will then be calculated for each portfolio above for each day over the period of January 2011 to December 2015.

4.3.4 Methodology on Momentum

Momentum strategies are investigated within three separate bands. Stocks will be sorted on the basis of cumulative daily returns only, then on the basis of market capitalization, and finally on the basis of book equity. Within each bands, momentum portfolios are constructed. Momentum portfolios will be constructed following the method described in Jegadeesh and Titman (1993).

The study will then use the method proposed by Carhart (1997) which is a four-factor model that uses an additional momentum factor in addition to the Fama and French model. For this part of the analysis monthly data will be used from January 2009 to December 2015. The four factor model is an augmented Fama and French three factor model with the momentum factor (WML). WML is constructed as the difference between the returns on the winner's portfolio and the returns on the loser's portfolio

for a given set of financial assets. The other explanatory variables were explained in Equation 6 and 7. The equation is given as:

$$R_{t} - R_{f} = \alpha + \beta \left[R_{m,t} - R_{f} \right] + s(SMB_{t}) + h(HML_{t}) + m(WML_{t}) + e_{t}$$

$$\tag{9}$$

4.4 Diagnostic Tests

Diagnostic tests will ensure that the model framework satisfy the various assumption in order to derive reliable coefficient estimates.

4.4.1 Multicollinearity

Multicollinearity is one of the problems encountered in regressions. In Classical Linear Regression Model (CLRM), it is also assumed that there is no linear relationship among all or some of the regressors. When there is perfect or near-perfect linear relationship among some or all of the explanatory variables in a regression model it leads to indeterminate regression coefficients and infinite standard errors. Multicollinearity among the explanatory variables can be assessed using the pair-wise correlations or Variance Inflation Factor (VIF). The suggested rule of thumb is that if the pair wise or zero order correlation coefficient between the regressors is high in excess of 0.8, then multicollinearity is a serious problem. Using the VIF,multicollinearity is a serious problem if the VIF is in excess of 10 (Gujarati, 1993).

Various remedial measures to multicollinearity are suggested. However, for the purpose of this study, if multicollinearity is evident, the process of transforming variables into their first difference form will be used. This method entails running the regression, not on the original variables but on the differences of successive values of

the variable. Another advantage of first difference transformation is that it may make a non-stationary time series stationary.

4.4.2 Heteroscedasticity

In addition to multicollinearity, heteroscedasticity is also one of the problems in Classical Linear Regressions. The Classical Linear Regression Model also assumes that the variance of each disturbance term conditional on the chosen values of the explanatory variables is some constant number. This is referred to as homoscedasticity, but when the variance of each disturbance term is not a constant number it is called heteroscedasticity. In a situation of heteroscedasticity, OLS estimators, though linear and unbiased, are not minimum variance among the class of linear estimators when disturbances are heteroscedastic. The issue is that outliers can bias regression slopes, particularly if they have significant leverage.

Heteroscedasticity in a model produces estimates that are not efficient but consistent. The likelihood ratio test for Heteroscedasticity will be used. It is superior to the general approach for testing for Heteroskedasticity because it is nested and is based on the behaviour of the residuals (Green, 2003). Those showing heteroscedasticity will be corrected using the White's heteroscedasticity consistent variances and standard errors.

4.4.3 Autocorrelation

Serial correlation refers to the correlation between the errors in different time periods. In a time series data model the explanation of serial correlation is that in each time period there contains a time-constant omitted factor(Wooldridge, 2002). The

Woodridge test for autocorrelation will be used to detect the presence of autocorrelation and will be corrected using the Cochrane-Orcutt procedure.

CHAPTER FIVE

PRESENTATION AND INTERPRETATION OF RESULTS

5.1 Introduction

This chapter presents and interprets the results of the study. The chapter is presented in five sections. The first section (5.1) will present the descriptive analysis. Section 5.2 will present results from the market model analysis and section 5.3 will present results from the Fama and French Three Factor Model. Momentum strategies results will be presented in section 5.4 and section 5.5 will conclude the chapter.

5.2 Descriptive Results

5.2.1 Day of the Week Effect and Month of the Year Effect

Table 4: Daily mean and CV of return for the market index

Market	Monday	Tuesday	Wednesday	Thursday	Friday
return					
Mean	0.000636	0.0020791	0.0008067	0.0010994	0.0007378
CV	6.840976	4.963697	6.368891	4.077599	7.437432

Source: Author's computation

Table 4 gives the daily mean and risks measured by the Coefficient of Variation (CV) for the five trading days of the week for market index (MASI). Thursday has been observed to have the highest daily return followed by Tuesday. However, these days

have the lowest risks in terms of CV with Thursday having the lowest risk followed by Tuesday. This indication of an anomaly as the higher returns on Thursday and Tuesday cannot be explained by higher risks on these days. These results prompt a further analysis on the daily market return by month and thus, table 5 gives the daily mean and CV for the market index by month of the year. Also, May and August, exhibit lower risks and higher returns as compared to other months of the year. May has higher returns followed by August, September and April respectively. The existence of higher returns and lower risks means there is a presence of anomalies in the market.

Table 5: Daily market return by month

Month	Januar	February	March	April	May	June
	y					
Daily	0.0003	0.0001	0.0008636	0.0008903	0.007856	0.0006
Mean						52
CV	5.7355	9.6682	7.071414	3.088249	3.10984	4.3051
						72
Month	July	August	September	October	November	Decem
						ber
Daily	0.0006	0.0028	0.0009585	0.001258	0.0007517	0.0002
Mean						413
CV	4.3051	3.7565	3.614409	5.765078	7.391391	11.547
						08

Source: Author's computation

5.2.2 Momentum Strategies

Table 6 gives the mean excess returns on the momentum portfolios sorted only for returns ranging from 0.77% (for the 6/6 month strategy) to 1.42% (for the 12/12 month strategy). The 12/12 month strategy exhibits higher returns than the other strategies which show that the 12/12 month strategy is more profitable than the other strategies.

Table 6: Mean excess returns for momentum portfolios based on returns only

P3 less P1			
Strategy	6/6 Months	6/12 Months	12/12 Months
Mean	0.0076735	0.0116251	0.0142694
Std. Dev.	0.0417964	0.0332304	0.0479639

Source: Author's computation

Sorting the portfolios based on size, the small market capitalization stocks exhibit excess returns ranging from 1.4% (for the 6/12 month strategy) to 1.9% (for the 6/6 month strategy). However, for the big market capitalization they have negative excess returns for all the strategies. However, this conforms to the previous knowledge about the size effect, which suggests that small market capitalization portfolios tend on average to outperform portfolios with big market capitalization.

Table 7: Mean excess returns for momentum strategies based on Size

Small Market CapitalizationStocks

SP3 less SP1

Strategy	6/6 months	6/12 months	12/12 months
Mean	0.0196386	0.0143034	0.0164795
SD	0.0417964	0.0332304	0.0479639

Big market Capitalization Stocks

BP3 less BP1

Strategy	6/6 months	6/12 months	12/12 months
Mean	-0.0136004	-0.0140465	-0.106006
SD	0.0282936	0.0211991	0.0202844

Source: Author's computation

In investigating the portfolios sorted on value (book to market equity), it is observed that for stocks with low book to market equity (BE/ME), they exhibited negative excess returns for all strategies. This is different from what other studies have found (Fama and French, 1993; Bundoo, 2011). However, for stocks with high BE/ME the mean excess return ranged from 2.1% (for the 6/6 month strategy) to 2.85% (for the 12/12 month strategy). Therefore, it is shown that momentum is positive for some stocks and portfolios and it is pervasive.

Table 8: Mean excess returns for momentum strategies based on Book to Market equity

Low BE/ME Stocks

LP3 less LP1

Strategy	6/6 months	6/12 months	12/12 months
Mean	-0.0036356	-0.008254	-0.0077958
SD	0.0408968	0.0284118	0.0241638

High BE/ME Stocks

HP3 less HP1

Strategy	6/6 months	6/12 months	12/12 months
Mean	0.0218187	0.0223103	0.0284978
SD	0.0295399	0.027144	0.0267352

Source: Author's computation

5.3 Day of the Week Effect and Month of the Year Effect using the MarketModel

5.3.1 Investigation of the Day of the Week Effects

Table 9 presents results when analysing day of the week effects on the market index level. It has been found that when the MASI is run on the trading days of the week, all days of the week have a positive and statistically significant effect on the market return. However, Thursday has a significantly stronger effect on the market return followed by Tuesday at 99% significance level. Srinivasan & Kalaivani (2014) found positiveMonday and Wednesday effects in the NSE-Nifty and BSE-SENSEX market returns which is slightly different from the results on the MASI. By analysing these results, the study found that in terms of trading volumes, there is an increase in trade

on Tuesdays and Wednesday on the MSE. Thus to say, due to the weekend, investors place orders on Monday after the trading hours awaiting changes in prices and news that could be given on Monday that could affect the listed companies and their profits.

When analysing day of the week effect on the market level it is unknown as to which companies determine these anomalies. It is therefore interesting to investigate which companies that registered on the MSE drive the anomalies on the MSE.

Table 9: Day of the week effect at Market level

Code	Monday	Tuesday	Wednesday	Thursday	Friday
MASI	0.000636*	0.0009791***	0.0008067*	0.0010994**	0.0007378*

Source: Author's computation

With a small population of companies it is possible and interesting to investigate the performance of returns at the micro and industry level that drive the anomalies on the MSE and vice versa. Table 10 gives the results of the day of the week effect on the return of individual stocks.

Table 10.1: Day of the week effects at company level by Industry

Code	Market	Monday	Tuesday	Wednesday	Thursday	Friday
	return					
Agriculture						
&Manufact						
uring						
ILLOVO	0.818***	0.047***	0.049***	0.050***	0.050***	0.051** *
	(0.177)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
Real Estate						
MPICO	-0.277	0.024***	0.020***	0.015***	0.015***	0.020**
	(0.149)	(0.004)	(0.002)	(0.005)	(0.005)	* (0.002)
						, ,
Hospitality						
SUNBIRD	0.182	-0.899***	-0.000	0.019**	0.020**	0.025**
	(0.109)	(0.222)	(0.006)	(0.006)	(0.006)	*
						(0.001)
BHL	-	0.060**	0.059***	0.059***	0.059***	0.059*
	0.332***	*	(0.001)	(0.001)	(0.001)	**
	(0.061)	(0.001)				(0.001)
Banking						
NBM	0.620^{*}	0.068***	0.068***	0.069***	0.070^{***}	0.069**
	(0.247)	(0.002)	(0.001)	(0.002)	(0.002)	*
						(0.002)
STANDAR	1.459***	0.063***	0.061***	0.062***	0.063***	0.064**
D	(0.258)	(0.003)	(0.002)	(0.002)	(0.003)	*
						(0.003)

Table 10.2 Day of the week effects at company level by Industry						
Code	Market	Monday	Tuesday	Wednesday	Thursday	Friday
	return					
Banking						
FMB	0.334	0.045**	0.045***	0.047***	0.046***	0.046*
	(0.289)	*	(0.001)	(0.001)	(0.001)	**
		(0.001)				(0.001)
NBS	-0.562**	0.043***	0.036***	0.037***	0.038***	0.036**
	(0.217)	(0.004)	(0.002)	(0.003)	(0.004)	*
						(0.004)
Insurance						
&						
Investment						
OLD	0.496	0.035***	0.037***	0.038***	0.038***	0.040^{**}
MUTUAL	(0.316)	(0.004)	(0.001)	(0.001)	(0.001)	*
						(0.002)
NICO	-0.342*	0.045***	0.046***	0.046***	0.045***	0.046**
	(0.155)	(0.002)	(0.002)	(0.002)	(0.002)	*
						(0.002)
Insurance						
only						
REAL	-0.086	0.107	0.001	0.001	0.002^{*}	-0.000
	(0.112)	(0.316)	(0.002)	(0.002)	(0.001)	(0.001)
Telecommu						
nications						
TNM	0.428	-0.163*	0.026***	0.034***	0.033***	0.039**
	(0.321)	(0.083)	(0.004)	(0.003)	(0.003)	*
						(0.002)

Table 10.3 Day of the week effects at company level by Industry

Code	Market	Monday	Tuesday	Wednesday	Thursday	Friday
	return					
NITL	-0.078	-0.037**	-0.023	-0.010	-0.000	0.009
	(0.098)	(0.014)	(0.012)	(0.010)	(0.008)	(0.006)
Conglomer						
ate						
PCL	0.102^{**}	-0.164	0.020***	0.023***	0.022***	0.024^{**}
	(0.040)	(0.094)	(0.002)	(0.002)	(0.002)	*
						(0.000)

NB: Standard errors in parentheses p < 0.1, p < 0.05, p < 0.01

Source: Author's computation

The market index level has a positive and significant influence on only four companies, a conglomerate (PCL) and two commercial banks (NBM and Standard) and an Agriculture and Manufacturing company (ILLOVO). Three companies record a negative influence from the market level index and the market level index has no significant influence on seven companies in diverse industries within the tertiary sector. This is attributed to the fact that, the four companies positively affected by the MASI were the major price movers in the period of the study while the three companies that recorded a negative MASI influence were the major losers in the period of study. Only two companies show no significant Monday influence, and three companies show no significant Tuesday effect. This has been attributed to the time zone hypothesis which suggests that investors learn and this leads to a migration of the Monday effect to Tuesday. Thus, investors know that negative returns on Monday exist, as such, they shift their trading to Tuesday. These results are consistent with the results of Bundoo (2011). Two companies recorded no significant

Wednesday effect, one company had no Thursday effect and lastly, two companies recorded no significant Friday effect. This could be due to the fact that most of the shares are bought by companies and thus are rarely sold on the secondary market, hence, registering no activity in these counters.

5.3.1 Investigating the Month of the Year Effect

Table 11.1: Month of the year effect at company level

Code	Constant	Market	January	May	August
		Return			
BHL	0.059***	-0.338***	-0.002	0.000	-0.001
	(0.001)	(0.061)	(0.002)	(0.001)	(0.001)
FMB	0.046***	0.276	-0.009***	0.000	0.005
	(0.001)	(0.279)	(0.001)	(0.002)	(0.003)
ILLOVO	0.049***	0.818***	0.002^{*}	0.002	-0.000
	(0.001)	(0.182)	(0.001)	(0.002)	(0.002)
MPICO	0.018***	-0.255	0.001	0.009^{*}	-0.005
	(0.002)	(0.144)	(0.003)	(0.004)	(0.003)
NBM	0.068***	0.524*	-0.005**	0.010***	0.012**
	(0.001)	(0.248)	(0.002)	(0.002)	(0.004)
NBS	0.037***	-0.547*	0.005	0.002	-0.003
	(0.002)	(0.223)	(0.004)	(0.004)	(0.004)
NICO	0.044***	-0.347*	0.001	0.016***	0.001
	(0.001)	(0.158)	(0.003)	(0.003)	(0.003)
NITL	0.045***	0.462*	0.000	0.006**	-0.000
	(0.002)	(0.209)	(0.002)	(0.002)	(0.002)
PCL	0.023***	0.069^{*}	-0.002	0.004***	0.003**
	(0.001)	(0.032)	(0.001)	(0.001)	(0.001)

Table 11.2: Month of the year effect at company level

Code	Constant	Market	January	May	August
		Return			
REAL	0.000	-0.109	-0.000	0.000	0.003
	(0.001)	(0.127)	(0.001)	(0.001)	(0.004)
STAND	0.061***	1.382***	-0.003	0.014**	0.009^{*}
ARD	(0.001)	(0.257)	(0.003)	(0.005)	(0.004)
SUNBIR	0.021***	0.162	0.004	0.011***	0.002
D	(0.003)	(0.088)	(0.003)	(0.003)	(0.003)
TNM	0.035***	0.370	-0.001	0.009**	0.006^{*}
	(0.002)	(0.302)	(0.002)	(0.003)	(0.003)
OLD	0.038***	0.537	0.006^{*}	0.000	-0.005**
MUTUA	(0.001)	(0.315)	(0.003)	(0.002)	(0.002)
L					

NB: Standard errors in parentheses p < 0.1, p < 0.05, p < 0.01

Source: Author's computation

When investigating the month of the year effect, it has been noted that only four companies had a statistically significant January effect at 10% significance level or better. However, due to the results from the descriptive analysis, we noted that anomalies were recorded in the months of May and August thus prompted an investigation into these months. Eight companies recorded a positive effect from the month of May and only 5 companies had a positive August effect at 10% significance

lever or better. The constant term captured the effect of the remaining nine months. Only Real Insurance Company recorded a non-significant constant term. This could be attributed to the fact that Real Insurance counter did not register any activity in the period of the study. We further investigated the effect of the month of year effect on the market level and table 11 gives the results. Table 12 shows that there is no-existence of the January effect on the market index level.

Table 12: Investigating month of the year effect on the MSE

Month	Coefficient
January	0.000 (0.000)
February	0.000 (0.000)
March	0.001 (0.001)
April	0.001** (0.000)
May	0.001** (0.000)
June	0.001* (0.000)
July	0.001*(0.000)
August	0.003** (0.001)
September	0.001** (0.000)
October	0.001 (0.001)
November	0.001 (0.001)
December	0.000 (0.000)

NB: Standard errors in parentheses p < 0.1, p < 0.05, p < 0.01

Source: Author's computation

This is contrary to the tax loss selling hypothesis. However, it has been noted that the MSE requires that registered companies publish interim (half yearly) reports within three months after the end of the interim period which could explain the highest effect of the months of August and September. Bundoo (2011) found similar results when investigating the effects of the month of year on the Market level.

5.4 Investigating Stock Market Anomalies using the Fama and French Three-

Factor Model

5.4.1 The Standard Fama and French Three-Factor Model

To investigate the possibility of earning abnormal profits, the standard Fama and French three-factor model is run to determine whether the constant term is significant. Table 13 shows the results of the Fama and French (1993) three factor model on the MSE. Despite that beta is less than one it is significant for all the portfolios. The SMB coefficient is significant for small market capitalization stocks (SL and SH) and insignificant for big market capitalization stocks (BL and BH). The h coefficient is negative for the low book to equity portfolios (SL and BL) but positive for high book to equity portfolios. This is consistent with Bundoo (2011), Fama and French (1993) and, Drew and Veerraghavan (2002) as the constant term was found to be significant for all portfolios. The results confirm the existence of the size and value premium on the MSE.

Table 13: Results for the standard Fama and French three factor model

Model: $(R_p t) - R_f = \alpha + \beta (R_{m,t} - R_f) + s(SMB_t) + h(HML_t) + \varepsilon_t$						
Portfolio	α coefficient	β coefficient	s coefficient	h coefficient		
excess returns						
SL	0.0300***	0.9722***	1.6267***	-0.5751817***		
SH	0.0446***	0.9863***	1.2326***	0.7019736***		
BL	0.0446***	0.9863***	-0.2673	-0.2980263*		
ВН	0.0300***	0.9722***	0.1267	0.4248***		

Source: Author's computation.

NB: *p< 0.1, **p< 0.05, ***p< 0.01

Note: SL is a portfolio of companies with small market capitalization (market size) and Low book equity to market equity (BE/ME); SH is a portfolio with companies with small market capitalization (market size) and High book equity to market equity (BE/ME). BH is a portfolio of companies with big market capitalization and high book equity to market equity (BE/ME) and BL is a portfolio of companies with big market capitalization and low book equity to market equity (BE/ME) (See appendix 16 - 20).

5.4.2 Analysing the Day of the Week Effect using the Fama and French Three Factor Model

In analysing day of the week effect based on the Fama and French three factor model framework, it was noted that all the trading days of the week are statistically insignificant (table 4). We can then deduce that the Fama and French three-factor model is quite robust in explaining the day of the week effect on the MSE.

Table 14: Investigating day of the week effect at portfolio level

Dependent Variable: SL		SH	BL	ВН
Regressor	Coefficient	Coefficient	Coefficient	Coefficient
Excess	0.9694***	0.9830***	0.9830***	0.9694***
market return				
SMB	1.6281***	1.2352***	-0.2647	0.1281
HML	-0.5748***	0.7026***	-0.2973*	0.4251***
Monday	0.0243	0.0456	0.0325	0.0295
Tuesday	0.0272	0.0438	0.0252	0.0297
Wednesday	0.0196	0.0444	0.0654	0.0299
Thursday	0.0202	0.0432	0.0347	0.0295
Friday	0.0117	0.0434	0.0965	0.0292

NB: p < 0.1, p < 0.05, p < 0.01

Source: Author's computation

This is not consistent with the results from the market model where Tuesday and Thursday were significant. However, SMB coefficient remains insignificant in the augmented model for portfolios with a big market capitalization.

5.4.3 Investigating the Month of the Year Effect using the Fama and French Three Factor Model

When the Fama and French three factor model was augmented to investigate the January effect, it was found that the variable was not significant for any of the portfolios. There existed no January effects on the MSE. This is consistent with the earlier results that were found when the January effect was investigated using the market model, but also with Bundoo (2011) who found no January effect on the Mauritius stock exchange.

Table 15: Investigating the month of the year effect at portfolio level

Portfolios	Constant	Excess	SMB	HML	January	May	August
		Market					
		Return					
SL	0.0296***	0.9734 ***	1.6273***	-0.5815***	0.0029	0.0060***	-0.0015
SH	0.0443***	0.9873***	1.2306***	0.7070***	-0.0015	0.0055***	0.0024
BL	0.0421***	0.9741***	-0.6510	-0.2929*	-0.0001	0.00654**	0.0052
ВН	0.0222***	.9232***	0.1073	0.4123***	.0015	0.0012***	0010

NB: *p< 0.1, **p< 0.05, ***p< 0.01

Source: Author's computation

Given the previous knowledge of anomalies existing in the months of May and August, the Fama and French three factor model is augmented to incorporate this effect and it was noted that only May was significant. All portfolios were found to have a significant May effect. This entails that for the given period of study, in May, investors made profits above the market. This is due to the fact that during this month, companies usually are trading with trading statements. This makes the market to be bullish.

5.5 Investigating Momentum Strategies on the MSE

5.5.1 Momentum Portfolios Sorted by Return Only

Table 16: Momentum portfolios sorted by return only regressed on the Fama and French three factors

D 46.11	CD CD	TTN AT		
Portfolio	Constant	Market Excess	SMB	HML
		Return		
P1	0.0441***	1.0301***	0.8579***	0.5082**
				*
Р3	0.0374***	0.9532***	0.5045*	-0.0416

NB: *p< 0.1, **p< 0.05, ***p< 0.01

Source: Authors' computation

Note: P1 is the winner's portfolio and P3 is the loser's portfolio.

Given that the 12/12 month strategy was significant in earning abnormal profits, it is interesting to analyse how the momentum factor affects momentum portfolio returns in this strategy. Table 16 gives results when momentum portfolios were regressed on the Fama and French three factors. The value premium factor (HML) was insignificant for the loser's portfolio, signifying that values of the stocks do not determine the return in the momentum. This is because for the loser's portfolio, investors do sell irrespective of the value of the firm. The company's performance affects the selling or buying decision of the investors rather than the value of the company.

However, when comparing the results from the Fama and French three factor model to the results from the Cahart (1997) Model (Table 17) for portfolios based on returns only, it should be noted that the value premium factor (HML)is insignificant for both groups of portfolios (losers and winners). The momentum factor is significant for both groups of portfolios based on returns only but was negative for the loser's portfolios.

This is so because as the difference between the winner's portfolio and loser's portfolio increases, it negatively affects the returns from a winner's portfolio but positively affects returns from a loser's portfolio as the winners buy up the losers' portfolios.

Table 17: Investigating momentum effects using the Carhart (1997) model

Based on retu	urn only				
Portfolio	Constant	Market excess return	SMB	HML	WML
P1	0.0400***	0.9833***	0.6428**	0.1735	-0.6085***
P3	0.0433***	0.8798***	0.6554*	0.1909	0.3914**
Small Marke	et Capitalization port	tfolios			
Portfolio	Constant	Market excess return	SMB	\mathbf{HML}	\mathbf{WML}
SP3	0.0221***	0.7659***	0.8765***	0.3019***	-0.5455***
SP1	0.0360***	0.9785***	0.9166***	0.2024***	0.4544***
Big Market (Capitalization portfo	lios			
Portfolio	Constant	Market excess return	SMB	HML	\mathbf{WML}
BP3	0.0408***	1.0221***	-0.7500***	-0.3283***	-0.9653***
BP1	0.0578***	1.4930***	-0.8821***	-0.4528***	0.0346
Low book eq	uity to market equity	y portfolios			
Portfolio	Constant	Market excess return	SMB	HML	WML
LP3	0.0365***	0.8674***	-0.2671***	-0.6739***	-0.9281***
LP1	0.0369***	0.9917***	-0.4182***	-0.5457***	0.0718**
High book ed	quity to market equit	ty portfolios			
Portfolio	Constant	Market excess return	SMB	\mathbf{HML}	\mathbf{WML}
HP3	0.0298***	0.9644***	0.7150***	0.8487***	-0.3748***
HP1	0.0327***	0.8932***	0.7730***	0.7891***	0.6251***

NB: *p< 0.1, **p< 0.05, ***p< 0.01

Source: Authors' computation

When investigating the momentum portfolios sorted by size, it was found that the momentum factor was significant for all portfolios based on small market capitalization, but, for the big market capitalization portfolios, the momentum factor was insignificant for the winners' (BP1) portfolios. The size premium and value premium factors were negative for the big market capitalization while for the small market capitalization they were positive. This is consistent with literature which suggests that small market portfolios tend to outperform big market portfolios, thus, the size and value premium of small market portfolios positively determine the momentum portfolio returns.

By investigating the momentum portfolios sorted by value, it has been seen that the momentum factor was significant for all portfolios in the low and high BE/ME portfolios with all signs as expected. The size premium and value premium factors were positive for the high BE/ME portfolios and negative for the low BE/ME momentum portfolios.

5.6 Conclusion

The results show that anomalies exist on the MSE. Days such as Tuesday and Thursday have higher returns than the other trading days on the MSE and retain the lowest risk. There is no existence of the January effect on the MSE, however, anomalies were found to dominate in the month of May which has the highest return compared to other months. Momentum strategies exist on the MSE and are pervasive in all strategies considered in the study.

CHAPTER SIX

CONCLUSIONS AND POLICY IMPLICATIONS

6.1 Summary and Conclusion of Results

The efficient market hypothesis suggests that stock markets are rational and stock prices reflect fully all available information whether private or public. Thus, securities prices quickly adjust to new information as it is made available. However, evidence has shown that certain markets are inefficient, therefore, leading to certain market players earning profits above the market (abnormal profits). Market anomalies are the unusual occurrence or abnormality in smooth patterns of stock market. This paper, therefore, investigated the existence of anomalies and momentum strategies on the Malawi Stock Exchange within the Asset Pricing models for the period of January 2011 to December 2015. The Market Model and the Fama and French Three Factor Model were adopted in the analysis. The market model was used to analyse the day of the week effect and the month of the year effect at company level and market level while the Fama and French three factor model was used to analyse anomalies and momentum strategies at portfolio level. The study found that Tuesday and Thursday had recorded the highest positive returns as compared to other trading days. Interesting enough, Tuesday and Thursday had the lowest risk as measured by the coefficient of variation. At the market level, Tuesday and Thursday were statistically positive and stronger than the other trading days. However, there is variation in day of the week effect when investigating individual listed companies. Analysing day of the

week effect at portfolio level, the study found that all days of the week were significant. This is because, in any given portfolio, different firms that had varied day of the week effect at individual analysis exist. Thus, at portfolio level, all the trading days tend to be significant in explaining anomalies. The study also found that there exists very minimal January effect at Company level and no January effect at both market level and portfolio level. Due to companies reporting requirements with the registrar of companies, the study noticed that May being the month companies are required to publish their end of year results, it had the highest return and the lowest risk as compared to other months of the year. When investigating momentums, the study discovered that strong momentum profits were found to be of small market capitalization portfolios as well as high book equity to market equity. In addition, the 12/12 month strategy was realised to be significant and retained the lowest risk than the other momentum strategies. The momentum factor was also statistically significant when considering momentum portfolios using the Cahart (1997) model, in addition to the size effect and value premium. Thus, stock market anomalies exist on the Malawi Stock Exchange as the study observed day of the week effects and month of the year effect.

6.2 Policy Implications

One of the most important sustainability requisite for the accelerated development of the economy in Malawi is the existence of a dynamic financial market. Therefore, this study has several policy implications in regards to this.

Firstly, evidence of the day of the week effect on the MSE does suggest that the market is not efficient. One of the reasons for such inefficiencies is information

asymmetry. Institutional traders have more market information than individual investors. As such, individual investors and tourist investors have information from media pundits which is not enough to base an investment decision. Institutional investors can carry out research to obtain more market information to base their investment decisions. Policies to deal with information asymmetry should be made. Member and non-member institutions of the MSE should have research departments which would be able to research the stock market and supply the information to their investors, that is, institutional, individual and tourist investors. Availability of information to investors and potential investors will lead to the disappearance of the day of the week effect. In addition, regulators of the Malawi Stock Exchange should institute mechanisms of preventing self-dealing amongst the small number of dominant players on the Malawi Stock Exchange. This is so since it results in massive accumulation of wealth amongst a small section of the community which effectively diminishes the market confidence because a large percentage of participants in an economy cannot trust the stock market as a tangible investment.

Secondly, formulation of policies to develop the infrastructure and improvement in the services offered by the exchange are crucial to boost operational efficiency and attract both local and foreign investors. There should be major improvements in the trading infrastructure such as a central depository and settlement system, which is a computerized system to speed up clearing and settlement.

Lastly, fund managers without a momentum mandate may inadvertently or purposefully expose the portfolio to the momentum factor. This can be seen by the estimation of the momentum factor in the Carhartmodel (1997). The Reserve Bank

should consider establishing in the investment policy statement explicit guidelines on the role of momentum investing by fund managers.

6.3 Study Limitations and Area for Further Research

It is important to recognize that though it has been evidently proven that market anomalies do exist on the Malawi stock exchange, it does not constitute proof that existing paradigms are wrong. It must be recognized that there might be issues of data snooping as much of the research done on financial market anomalies is prone to data snooping. More research is needed to resolve these issues. In addition, investigation of anomalies on sector level was not possible due to unavailability of data on sectors.

Well-established asset pricing paradigms are significantly challenged by the evidence of the existence of market anomalies in Malawi. However, there is but little consensus on alternative theoretical models. Due to this problem, the focus on future research should be on the development of such models.

REFERENCES

- Agathee, U. (2008). Day of the Week Effect: Evidence from the Stock Exchange of Mauritius (SEM). *International Research Journal of Finance and Economics*, 17, 7-14.
- Alexakis, P., & Xanthakis, M. (1995). Day of the Week Effect on the Greek Stock Market. *Applied Financial Economics*, 5, 43-50.8
- Alliance Capital Limited . (16th September, 2011). Weekly Issue, Week Ending 16th September, 2011.
- Ayadi, O. F. (1998). The Efficiency of Price Discovery in the Stock Market and Macroeconomic Variables: An Empirical Investigation. *African Review of Money, Finance and Banking*, 33-35.
- Bencivenga, V. R., Smith, B. D., & Starr, R. M. (1995). Transactions Costs, Technological Choice and Endogenous Growth. *Journal of Economic Theory*, 55-177.
- Bhana, N. (1985). The Monday effect on the Johannesburg Stock Exchange. South

 African Journal of Business Management, 16, 7-11.
- Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. *Journal of Business* 45, 444-455.

- Botha, F. (2013). Stock Returns and Friday the 13th Effect in Five African Countries. *African Review of Economics and Finance*, 4, 247-253.
- Boudreaux, D. O. (1995). The Monthly Effect In International Stock Markets:

 Evidence and Implications. *Journal of Financial and Strategic Decisions*, 8,

 1.
- Brown, P., Keim, D. B., Kleidon, A., & March, T. A. (1983). Stock Return

 Seasonalities and the Tax-Loss Selling Hypothesis. *Journal of Financial Economics*, 12, 105–27.
- Bundoo, S. K. (2011). An analysis of Stock Market Anomalies and Momentum Strategies on the Stock Exchange of Mauritius. Nairobi: AERC, 227.
- Carhart, M. (1997). On Persistence in Mutual Fund Performance. *Journal of Finance* 52, 54–82.
- Chui, A., Titman, S., & Wei, J. (2011). Individualism and Momentum Around the World. Forthcoming Journal of Finance 65, 361-392.
- Chui, A., Titman, S., & Wei, J. (2000). Momentum, Ownership Structure, and Financial C rises: An Analysis of Asian Stock Markets. *Working paper, University of Texas at Austin*.
- Chukwuogor-Ndu, C. (2007). Econometric Analysis of African Stock Markets:

 Annual Returns Analysis, Day-of-the-Week Effect and Volatility of Returns.

- African Journal of Accounting, Economics, Finance and Banking Research, 1, 26-43.
- Chukwuogor-Ndu, C. (2008). Econometric Analysis of African Stock Markets:

 Annual Returns Analysis, Day-of-the-Week Effect and Volatility of Returns.

 African Journal of Accounting, Economics, Finance and Banking Research,
 26-43.
- Chung, S. S. (2012). A Class of Non-Parametric Volatility Models: An Application to Financial Time Series. *Journal of Econometrics*, *3*, 307-327.
- Cross, F. (1973). The Behaviour of Stock Prices on Fridays and Mondays. *Financial Analysts Journal*, 67-69.
- Derbali, A., & Hallara, S. (2016). Day-of-the-Week Effect on the Tunisian Stock

 Market Return and Volatility. *Cogent Business & Management*, 3.
- Derbali, A., Hellara, S., & McMillan, D. (2016, April 11). Retrieved December 9, 2016, from Researchgate:
 - https://www.researchgate.net/publication/296473882_Day-of-theweek_effect_on_the_Tunisian_stock_market_return_and_volatility
- Diaconasu, D.-E., Mehdian, S., & Stoica, O. (2012). An Examination of the Calendar Anomalies in the Romanian Stock Market. *Procedia Economics and Finance* (3), 817-822.

- Dicle, M., & Hassan, M. K. (2007). Day of the Week Effect in Istanbul Stock Exchange. *Scientific Journal of Administrative Development*, 5, 53-83.
- Drew, M. E., & Veeraghavan, M. (2002). A Closer Look at the Size and Value Premium in Emerging Markets: Evidence from the Kuala Lumpur Stock Exchange. *Asian Economic Journal*, 337-351.
- Dyl, E., & Maberly, E. (1988). The Anomaly That Isn't There: A Comment on Friday the Thirteenth. *Journal of Finance*, *Vol* 42, 1285-1286.
- Fama. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. *The Journal of Finance*, 25, 383-417.
- Fama, E. F., & French, K. R. (2004). The Capital Asset Pricing Model: Theory and Evidence. *Journal of Economic Perspectives 18*, 25-46.
- Fama, E. F., & French, K. R. (1992). The Cross Section of Expected Stock Returns. *Journal of Finance* 47, 55-84.
- Fama, E., & French, K. (1996). Multifactor Explanations of Asset Pricing Anomalies. *Journal of Finance* 51(1), 55-84.
- Fields, M. (1931). Stock Prices: A Problem in Verification. *The Journal of Business* of the University of Chicago VOL 4 No 4, 415-418.
- Fileds. (1931). *Research Gate*. Retrieved December 9, 2016, from https://www.researchgate.net/publication/276139436_Analyzing_the_

- Existence_of_the_Day_of_the_Week_Effect_in_Selected_Emerging_Country _Stock_Exchanges.
- Frederick, S., Loewenstein, G., & Donoghue, T. (2002, June). Time Discounting and Time Preference: A Critical Review. *Journal of Economic Literature*, 40(2): 351-401.
- French, K. (1980). Stock Returns and the Week-end Effect. *Journal of Financial Economics*, 8, 55-70.
- Garcia, V. F., & Liu, L. (1999). Macroeconomic Determinants of Stock Market Development. *Journal of Applied Economics*, 2, 29-25.
- Green, W. H. (2003). *Econometric Analysis* (5th Edition ed.). New Jersey: Pearson Education, Inc.
- Griffin, J. M., Ji, X., & Martin, J. S. (2003,2005). Momentum Investing and Business Cycle Risk: Evidence from Pole to Pole. *Journal of Finance*, *58*, 2515–2547.
- Grundy, B. D., & Martin, J. S. (2001). Understanding the Nature of the Risks and the Source of the Rewards to Momentum Investing. *The Review of Financial Studies* 14, 29-78.
- Gujarati, D. (2004). Basic Econometrics. Boston: The McGraw-Hill.

- Gultekin, M., & Gultekin, N. (1983). Stock Market Seasonality: International Evidence. *Journal of Financial Economics*, 12, 469–82.
- Hui, T. (2005). Day-of-the-Week Effects in US and Asia-Pacific Stock Markets
 During the Asian Financial Crisis: A Non-Parametric Approach. The
 International Journal of Management Science 33, 277-285.
- Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers:

 Implications for Stock Market Efficiency. *Journal of Finance*, 48, 65–91.
- Jegadeesh, N., & Titman, S. (1993,1995). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. *Journal of Finance* 48, 65-92.
- Kampanje. (2012, August 27). Testing Weak Form of Stock Market Efficiency.

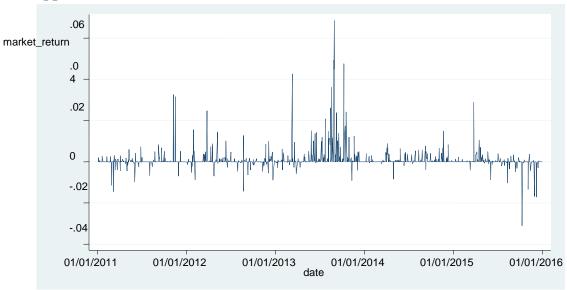
 Blantyre, Malawi.
- Kato, K. (1990). Weekly Patterns in Japanese Stock Returns. *Management Science* 36, 1031-46.
- Kendall, D. (1953). The Analysis of Economic Time-Series-Part 1: Prices. *Journal of the Royal Statistical society*, (Series A), 116 (1), 11-34.
- Khitinji, A., & Ngugi, W. (2010). Stock Market Performance Before and After General Elections—a Case Study of the Nairobi Stock Exchange. *College of Humanities and Social Sciences*. University of Nairobi.

- Kleidon, A. W. (1986). Anomalies in Financial Economics: Blueprint for Change. *Journal of Business*, 469-499.
- Kohers, G., Kohers, N., Pandey, V., & Kohers, T. (2004). The Disappearing Day-of-the-Week Effect in the World's Largest Equity Markets. *Applied Economics Letters* 11, 167-171.
- Kolb, R., & Rodriguez, R. (1987). Friday the Thirteenth: 'Part VII' A Note. *Journal of Finance*, 42, 1385–1387.
- Lakonishok, J., & Smidt, S. (1982). Are Seasonal Anomalies Real? A Ninety Year Perspective. *Review of Financial Studies*, 1, 403-25.
- Latif, M., Arshad, S., Fatima, M., & Farooq, S. (2011). Market Efficiency, Market Anomalies, Causes, Evidences, and Some Behavioral Aspects of Market Anomalies. *Research Journal of Finance and Accounting*, 2(9/10).
- Lee, C., & Swaminathan, B. (2000). Price Momentum And Trading Volume. *Journal of Finance*, 55, 2017–2069.
- Levine, R. (1991). Stock Markets Growth and Tax Policy. *Journal of Finance*, 1445-65.
- Levine, R., & Zervous, S. (1998). Stock Markets, Banks, and Economic Growth.

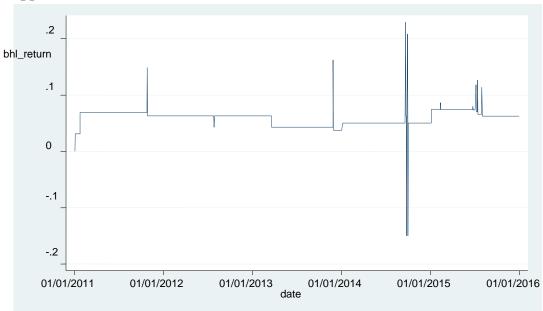
 American Economic Association.

- Litner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. *Review of Economics and Statistics* 47, 13-37.
- Liu, J. (2015). Day of the week effect in returns and volatility of the S&P 500 Sector Indices. (Masters Theses). Paper 7436.
- Lucey, B. (2001). Friday the 13th: International Evidence. *Applied Economics Letters*, 8, 577-579.
- Mehdian, S., & Perry, M. (2001). The Reversal of the Monday Effect: New Evidence from US Equity Markets. *Journal of Business Finance and Accounting*, 28, 1043-1066.
- Mills, T., Siriopoulos, C., Markelos, R., & Harizanis, D. (2000). Seasonality in the Athens Stock Exchange. *Applied Financial Economics*, 10, 137-42.
- Moskowitz, T., & Grinblatt, M. (1999). Do Industries Explain Momentum? *The Journal of Finance*, 1249-1290.
- Ntim, C. G., Opong, K. K., Danbolt, J., & Dewotor, F. S. (2011). Testing the Weak-Form Efficiency in African Stock Markets *Managerial Finance*, 37(3), 195-218.
- Obstfeld, M. (1994). Risk-Taking, Global Diversification and Growth. *American Economic Review*, 1310-1315.

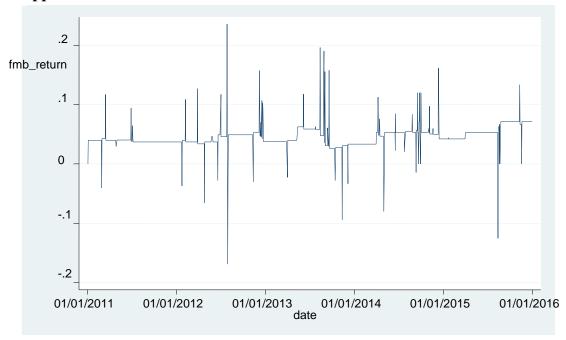
- Patel, J. B. (2009).). Recent Evidence on Friday the Thirteenth Effect in U.S. Stock Returns. *Journal of Economics and Business Research* 7, 55–58.
- Ritter, J. R. (1988). The Buying and Selling Behaviour of Individual Investors at the Turn of the Year.
- Rogalski, R. J. (1984). New Findings Regarding Day of the Week Returns Over Trading and Non-trading Periods. *Journal of Finance 39*, 603-14.
- Roll, R. (1983). Vas ist das? The Turn of the Year Effect and the Return Premia of Small Firms. *Journal of Portfolio Management 9*, 18-28.
- Rosi, C. R. (1973). *Linear statistical inference and its applications*. New York: John Willey &Sons.
- Rozeff, M., & Kinney, W. (1976). Capital Market Seasonality: The Case of Stock Return. *Journal of Financial Economics*, *3*, 379–402.
- Schultz, T. W. (1961). Investment in Human Capital. *American Economic Review*, 51, 1-17.
- Schwert, T. (2001). Anomalies and Market Efficiency. In *Handbook of the Economics* of *Finance*. North Holland: Amsterdam.
- Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrum Under Conditions of Risk. *Journal of Finance*, 425-442.

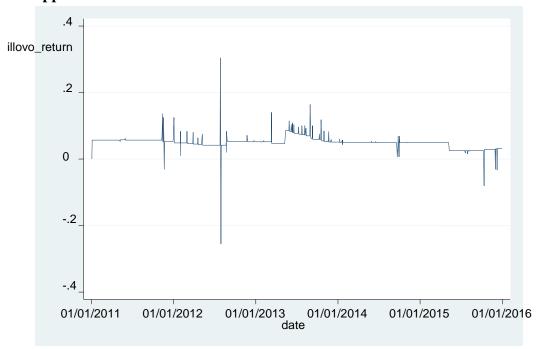

- Srinivasan, & Kalaivani, M. (2014). Day-of-the-Week Effects in the Indian Stock Market. *International Journal of Economics and Management* 8(1), 158-177.
- Stockbrokers Malawi Limited. (September, 2010). *Malawi Stock Exchange In Calmer Waters*.
- Torgler, B. (2007). Determinants of Superstition. *Journal of Socio-Economics*, 36, 713–733.
- Tversky, A., & Kahneman, D. (1986). Rational Choice and the Framing of Decisions. *Journal of Business*, 251-278.
- Wachtel, S. B. (1942). Certain Observations on Seasonal Movements in Stock Prices.

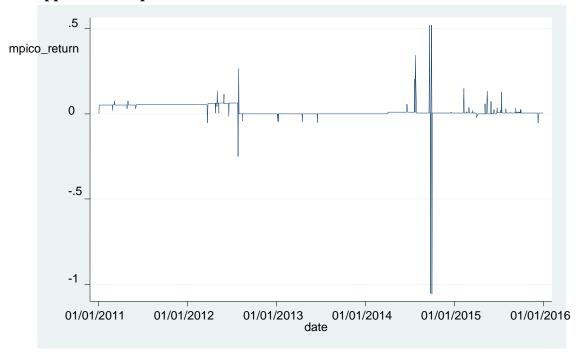
 The Journal of Business Of The University Of Chicago, 15(2), 184-193.
- Wei, J., Kent, D., & Sheridan, T. (2000). Explaining the Cross-Section of Stock Returns in Japan: Factors or Characteristics? *The Journal of Finance*, 56(2), 743-768.
- Wooldridge, J. M. (2002). Econometric Analysis of cross section and panel data.

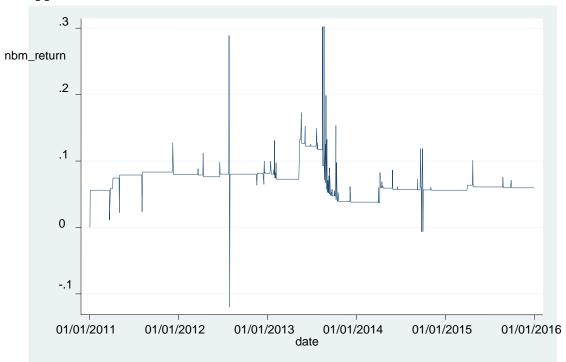

 Cambridge: MIT Press.
- World Bank, W. (2009). Country Assistance Strategy of the World Bank for the Republic of. Washington, D.C.
- Zakirova, V., & Caporale, M. (2017). Calendar Anomalies in the Russian Stock Market. *Russian Journal of Economics*, 3, 101-108.

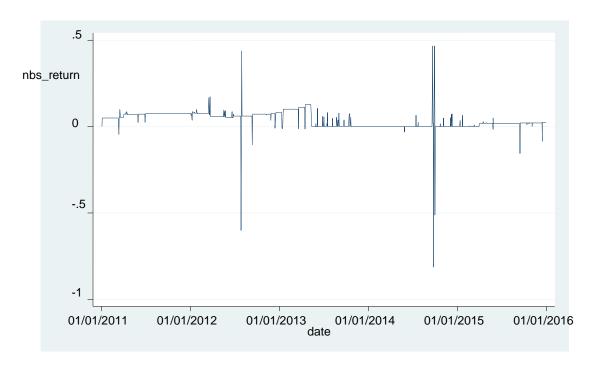
APPENDICES

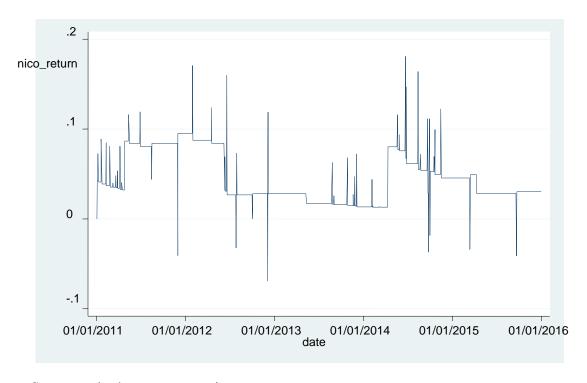

Appendix 1:Market return

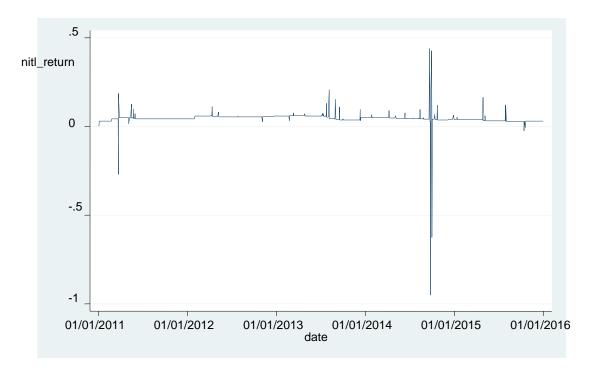

Appendix 2: BHL return

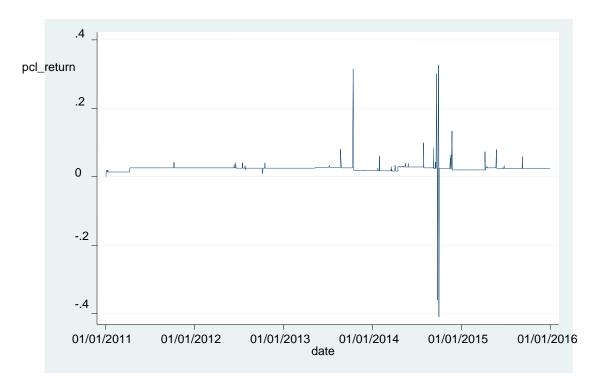

Appendix 3:FMB return

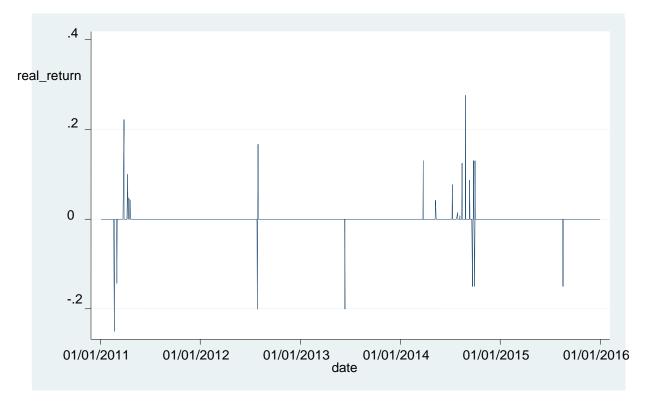

Appendix 4: Illovo return

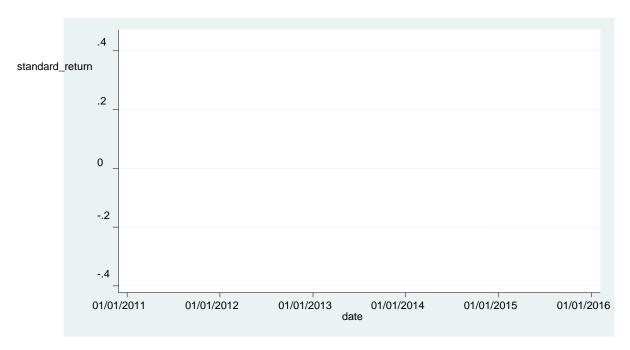

Appendix 5: Mpico return

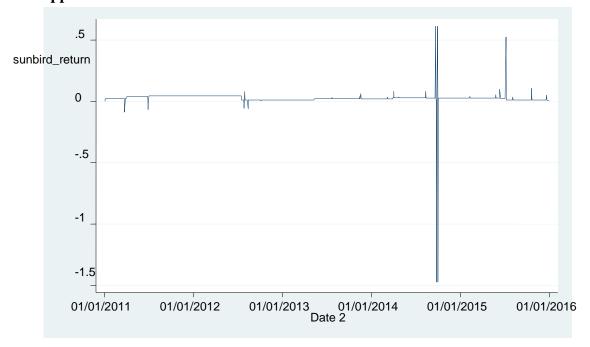

Appendix 6: NBM return

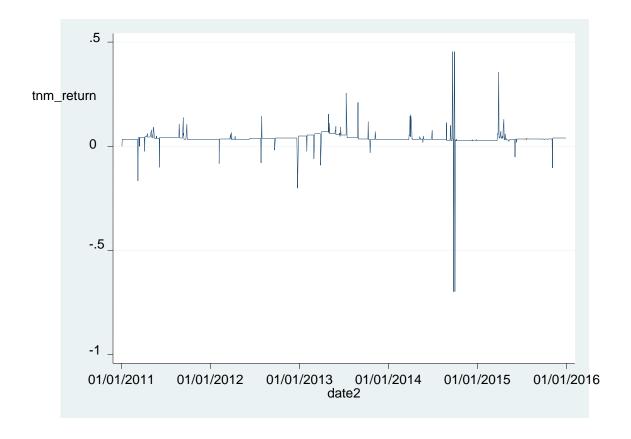

Appendix 7: NBS return

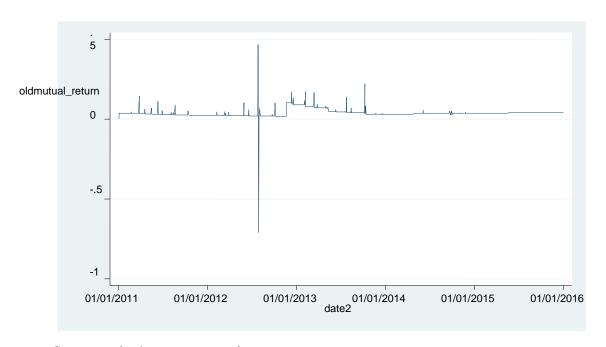

Appendix 8: NICO return


Appendix 9: NITL return


Appendix 10: PCL return


Appendix 11:REAL return


Appendix 12: STANDARD return


Appendix 13: SUNBIRD return

Appendix 14: TNM return

Appendix 15: OLD MUTUAL return

Appendix 16:Categorization of Portfolios 2011

LOW-HIGH		SMALL-BIO	3					
					S/L	S/H	B/L	В/Н
COMPANY 30/12/2	011	Company	30/12/2011		NBS	REAL	FMB	PCL
ILLOVO 0.1851	35	REAL	300			BHL	TNM	
OLDMUTUAL0.2717	39	BHL	899.15			SUNBIRD	STANDAR	D
TNM 0.3816	79	SUNBIRD	1831.08			NITL	NBM	
STANDARDBANG.43	29 LOW	NITL	2160	SMALL		MPICO	ILLOVO	
FMB 0.46	23	MPICO	3447.07			NICO	OLDMUT	UAL
NBM 0.4878	05	NBS	7276.43					
NBS 0.4901	96	NICO	11473.45					
REAL 0.5988	02	FMB	16353.75					
NICO 0.9803	92	TNM	19076.86					
BHL 1.2195	12	PCL	21646.05					
NITL 1.2345	68 HIGH	STANDARE	22400.08	BIG				
PCL 1.2987	01	NBM	24513.64					
MPICO 2.3255	31	ILLOVO	92747.77					
SUNBIRD 2.7777	78	OLDMUTU	A 2 47092951					

Appendix 17: Categorization of Portfolios 2012

LOW-HIGH		SMALL-BIG
31/12/201	2	Company
0.188679		REAL
0.279329		BHL
0.4329		SUNBIRD
0.452489	LOW	NITL
0.584795		MPICO
0.609756		NBS
L 0.70922		TNM
0.813008		NICO
0.925926		FMB
1.408451		PCL
1.428571	HIGH	NBM
1.515115		STANDARD
3.030303		ILLOVO
3.571429		OLDMUTU
	31/12/201: 0.188679 0.279329 0.4329 0.452489 0.584795 0.609756 L 0.70922 0.813008 0.925926 1.408451 1.428571 1.515115 3.030303	31/12/2012 0.188679 0.279329 0.4329 0.452489 0.584795 0.609756 L 0.70922 0.813008 0.925926 1.408451 1.428571 1.515115 3.030303

S/L В/Н S/H B/L REAL BHL FMB NICO TNM SUNBIRD NBM PCL NITL STANDARD MPICO ILLOVO OLDMUTUAL NBS

Appendix 18: Categorization of Portfolios 2013

LOW-HIGH								
Company	31/12/2013	3						
ILLOVO	0.160772							
STANDARD	0.192678							
NBM	0.214592							
FMB	0.346021	LOW						
TNM	0.383142							
NBS	0.613497							
NICO	0.847458							
OLDMUTUA	LO.900901							
REAL	1							
PCL	1.219512							
NITL	1.369863	HIGH						
BHL	1.639344							
SUNBIRD	4							
MPICO	5							

SMALL-BIG							
Company 31/1/2013							
REAL	250						
BHL	1033.54						
SUNBIRD	1831.08						
MPICO	2298.05	SMALL					
NITL	3982.5						
NBS	11642.29						
NICO	18566.13						
TNM	21486.56						
PCL	34272.91						
FMB	35043.75	BIG					
STANDARD	8533.63						
NBM	100389.2						
ILLOVO	204758.5						
OLDMUTUAL 6659045							

Appendix 19: Categorization of Portfolios 2014

LOW-HIGH		SMALL-BIG	
Company 31/12/2014	4	Company 31/12/2014	1
ILLOVO 0.156739		REAL 575	
STANDARD 0.224719		BHL 1033.54	
TNM 0.241546		SUNBIRD 2092.66	
NBM 0.285714	LOW	MPICO 4619.08	SMALL
FMB 0.387597		NITL 5602.5	
NBS 0.458716		NBS 19646.37	
NICO 0.740741		NICO 33898.84	
REAL 0.877193		TNM 41065.44	
OLDMUTUAL0.877193		FMB 44295.3	
PCL 1.052632		PCL 54489.91	
NITL 1.333333	HIGH	STANDARD 102000	BIG
BHL 1.694915		NBM 112529.3	
SUNBIRD 3.703704		ILLOVO 209895.3	
MPICO 3.846154		OLDMUTUAL 6857622	

Source: author's own computation

FMB

Appendix 20: Categorization of Portfolios 2015

Company 31/12/2015 Company 31/12/2015 TNM 0.21978 REAL 500 ILLOVO 0.255102 BHL 1240.25 STANDARD 0.359712 SUNBIRD 6016.4 NBM 0.3663 LOW NITL 7425 SMALL FMB 0.653595 MPICO 9421.99 NBS 16735.8 OLDMUTUAL0.892857 NICO 29205.15 NITL 1 FMB 32707.5 NICO 1.010101 TNM 60242.7 PCL 64336.86 PCL 64336.86 PCL 64336.86 PCL 64336.86 PCL FMIGH STANDARD 103254 HIGH NBM 120468.4	LOW-HIGH				SMALL-BIG	i	
ILLOVO 0.255102 STANDARD 0.359712 SUNBIRD 6016.4 NBM 0.3663 LOW NITL 7425 SMALL FMB 0.653595 NBS 0.699301 NBS 16735.8 NICO 29205.15 NITL 1 FMB 32707.5 NITL 1 FMB 32707.5 NICO 1.010101 TNM 60242.7 PCL 1.162791 PCL 64336.86 REAL 1.219512 HIGH STANDARD 103254 HIGH NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3 HIGH NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3 HIGH NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3 MICO 1.923077 ILLOVO 164092.3 MICO 1.923077 ILLOVO 164092.3 MICO 1.923077 MICO 1.923077		Company	31/12/2015	5	Company 31/12/2015		5
STANDARD 0.359712 NBM SUNBIRD 6016.4 NBM		TNM	0.21978		REAL	500	
NBM 0.3663 LOW NITL 7425 SMALL FMB 0.653595 MPICO 9421.99 NBS 16735.8 16735.8 NICO 29205.15 NICO 29205.15 NICO 101010 TMM 60242.7 PCL 64336.86 PCL 64336.86 PCL 64336.86 PCL FMGH STANDARD 103254 PMGH NBM 120468.4 PCL 1.388889 NBM 120468.4 PMGH PCL 1.393077 ILLOVO 164092.3 PCL 1.40002.3 PMGH 1.30002.3 PMGH		ILLOVO	0.255102		BHL	1240.25	
FMB 0.653595 NBS 0.699301 OLDMUTUAL0.892857 NITL 1 NICO 1.010101 PCL 1.162791 REAL 1.219512 SUNBIRD 1.388889 MPICO 1.923077 MPICO 9421.99 NBS 16735.8 NICO 29205.15 NITO 29205.15 TNM 60242.7 PCL 64336.86 NBM 120468.4 NBM 120468.4 NBM 120468.4 NBM 120468.4 NBM 120468.4 NBM 120468.4		STANDARD	0.359712		SUNBIRD	6016.4	
NBS 0.699301 NBS 16735.8 OLDMUTUAL0.892857 NICO 29205.15 NITL 1 FMB 32707.5 NICO 1.010101 TNM 60242.7 PCL 1.162791 PCL 64336.86 REAL 1.219512 HIGH STANDARD 103254 SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		NBM	0.3663	LOW	NITL	7425	SMALL
OLDMUTUAL0.892857 NICO 29205.15 NITL 1 FMB 32707.5 NICO 1.010101 TNM 60242.7 PCL 1.162791 PCL 64336.86 REAL 1.219512 HIGH STANDARD 103254 SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		FMB	0.653595		MPICO	9421.99	
NITL 1 NICO 1.010101 PCL 1.162791 REAL 1.219512 HIGH STANDARD 103254 SUNBIRD 1.388889 MPICO 1.923077 NITL 1 FMB 32707.5 TNM 60242.7 PCL 64336.86 FMB 103254 FMGH STANDARD 103254 FMGH STANDARD 103254 FMGH STANDARD 104092.3		NBS	0.699301		NBS	16735.8	
NICO 1.010101 TNM 60242.7 PCL 1.162791 PCL 64336.86 REAL 1.219512 HIGH STANDARD 103254 SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		OLDMUTUA	L0.892857		NICO	29205.15	
PCL 1.162791 PCL 64336.86 REAL 1.219512 HIGH STANDARD 103254 SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		NITL	1		FMB	32707.5	
REAL 1.219512 HIGH STANDARD 103254 HIGH SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		NICO	1.010101		TNM	60242.7	
SUNBIRD 1.388889 NBM 120468.4 MPICO 1.923077 ILLOVO 164092.3		PCL	1.162791		PCL	64336.86	
MPICO 1.923077 ILLOVO 164092.3		REAL	1.219512	HIGH	STANDARD	103254	HIGH
		SUNBIRD	1.388889		NBM	120468.4	
BHI 2.857143 OLDMUTUAL 6906471		MPICO	1.923077		ILLOVO	164092.3	
5.12		BHL	2.857143		OLDMUTU	AL 6906471	

 S/L
 S/H
 B/L
 B/H

 NBS
 REAL
 FMB
 PCL

 BHL
 TNM

 SUNBIRD
 STANDARD

 NITL
 NBM

 MPICO
 ILLOVO

 NICO
 OLDMUTUAL